GPU programming using CUDA

\\

Data analytics in the era of large-scale machine learning

//

Giannis Koutsou,

Computation-based Science and Technology Research Center,

The Cyprus Institute

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs

Covering:

- GPU performance vs CPU performance
- Memory coalescing on GPUs
- Shared memory
- What is a warp and should you care

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs

Covering:

- GPU performance vs CPU performance
- Memory coalescing on GPUs
- Shared memory
- What is a warp and should you care

Assumptions about this hands-on session

- Some familiarity with programming in C or C++
- Familiarity with some common tasks in C, e.g. array allocation, pointers, etc.
- Can edit text files on a remote server, e.g. text-based (emacs or vim) or <u>VS Code Remote</u>
- Hopefully this will be useful to capture high-level GPU features that affect performance

Lecture part

- Review of GPU architecture
- Review of GPU programming and CUDA
- Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs

Covering:

- GPU performance vs CPU performance
- Memory coalescing on GPUs
- Shared memory
- What is a warp and should you care

Assumptions about this hands-on session

- Some familiarity with programming in C or C++
- Familiarity with some common tasks in C, e.g. array allocation, pointers, etc.
- Can edit text files on a remote server, e.g. text-based (emacs or vim) or <u>VS Code Remote</u>
- Hopefully this will be useful to capture high-level GPU features that affect performance

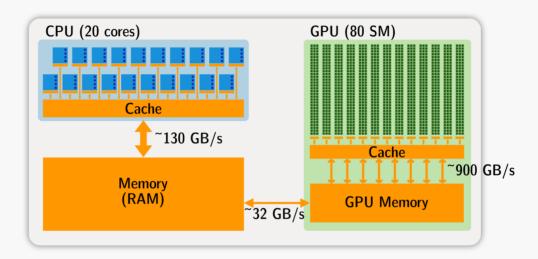
Repo with slides (PDF) and exercises and URL for direct access to slides:

github.com/g-koutsou/NCC-training-202305

https://sds402.online/training

GPU architecture

At a very high level:

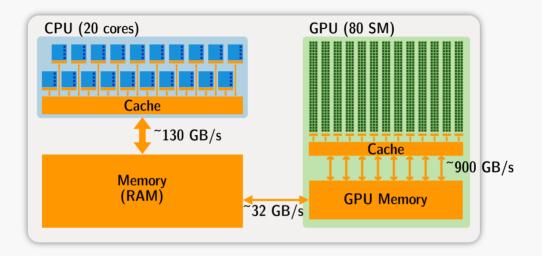


CPU

- Few heavy cores
- Large memory
- Moderate BW to memory
- Optimized for serial execution

GPU

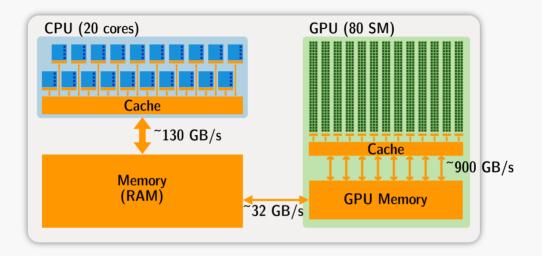
- Many light "cores"
- Smaller memory
- High BW to memory
- Optimized for parallel execution



Some numbers from the GPU partition of our Cyclone cluster

NVIDIA V100 Volta GPUs

- 80 Streaming Multiprocessors (SM) per GPU
- 64 "cores" per SM
- GPU memory: 32 GBytes
- Memory bandwidth: 900~GB/s
- Peak performance: 7.8 Tflop/s (double precision)

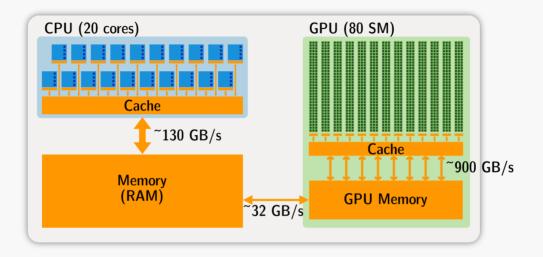


Some numbers from the GPU partition of our Cyclone cluster

NVIDIA V100 Volta GPUs

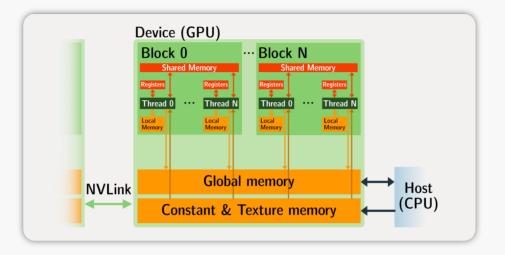
- 80 Streaming Multiprocessors (SM) per GPU
- 64 "cores" per SM
- GPU memory: 32 GBytes
- Memory bandwidth: 900~GB/s
- Peak performance: 7.8 Tflop/s (double precision)

We will come back to these numbers during the hands-on



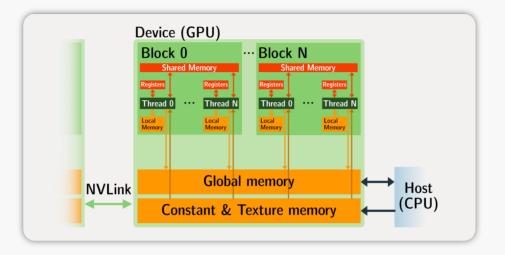
"Offload" model of programming

- CPU starts program (runs main())
- CPU copies data to GPU memory (over e.g. PCIe, ~32 GB/s)
- CPU dispatches "kernels" for execution on GPU
 - Kernels read/write to GPU memory (~900 GB/s)
 - Kernels run on GPU threads (thousands) which share *fast* memory [O(10) times faster compared to GPU memory]
- Kernel completes; CPU copies data back from GPU (over e.g. PCIe, ~32 GB/s)



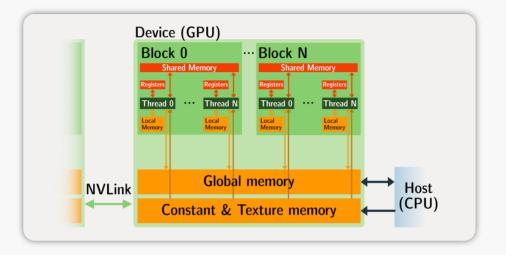
GPU memory model (NVIDIA model)

- GPU threads: *slow* access to global, constant, and texture memory
- Each thread has registers (fast) and local memory (slow)
- Threads are grouped into *blocks*; Threads within the same block: *shared memory* (fast)
- Shared memory is limited. E.g. 96 KB per block for V100



GPU memory model (NVIDIA model); some numbers for context

- Threads per block: 1024 (max)
- Register memory (per block): 64 KB
- Shared memory (per block): 96 KB
- Also, max. 255 registers per thread



GPU memory model (NVIDIA model)

- Assumptions about execution order
 - Threads within the same block can be assumed to run concurrently
 - No assumption about the order by which blocks are executed

CUDA programming model

NVIDIA programming framework for NVIDIA GPUs

- Compute Unified Device Architecture
- C-like programming language for writing CUDA Kernels
 - Includes C/C++ and Fortran variants
 - Compiler for C/C++: nvcc
- Functions for transferring data to/from GPUs, starting kernels, etc.
- Some higher-level functionality also available (linear algebra, random number generations, etc.)
- Concepts generalizable to other accelerator programming frameworks (OpenCL, OpenACC, HiP, etc.)

Nomenclature

- "Host" is the CPU
- "Device" is the GPU

Allocate memory on GPU

err = cudaMalloc(&d_ptr, size);

- Call from host (CPU)
- Allocate size bytes of memory on GPU and store the starting address in d_ptr
- d_ptr is a variable that holds an address to GPU memory i.e. a "device pointer"
- If err != cudaSuccess then something went wrong

Free GPU memory

cudaFree(d_ptr);

Nomenclature

- "Host" is the CPU
- "Device" is the GPU

Copy data to GPU

cudaMemcpy(d_ptr, ptr, size, cudaMemcpyHostToDevice);

- Call from *host* (CPU)
- Copy data on host pointed to by ptr to device at address pointed to by d_ptr
- Device memory should have been allocated using cudaMalloc() to obtain d_ptr

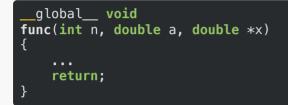
Copy data from GPU

cudaMemcpy(ptr, d_ptr, size, cudaMemcpyDeviceToHost);

- Call from host (CPU)
- Copy data on device pointed to by d_ptr to host at address pointed to by ptr
- Host memory should have been allocated using e.g. malloc() to obtain ptr

Declare a CUDA kernel

Example:



Call a CUDA kernel

• Call from host. Example:

func<<<nblck, nthr>>>(n, a, x);

- nthr: number of threads per block; can be scalar or a dim3 type
- nblck: number of blocks; can be scalar or a dim3 type
- Example of dim3 type:

dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */

Call a CUDA kernel

• Call from host. Example:

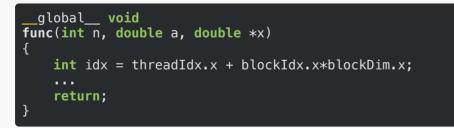
func<<<nblck, nthr>>>(n, a, x);

- nthr: number of threads per block; can be scalar or a dim3 type
- nblck: number of blocks; can be scalar or a dim3 type
- Example of dim3 type:

dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */

Thread coordinates within kernel

Example:

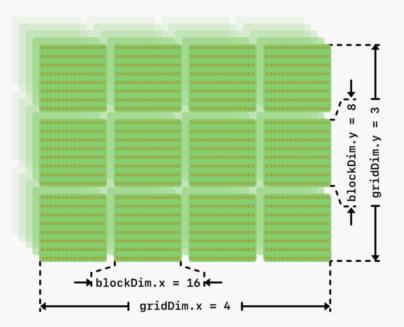


```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```

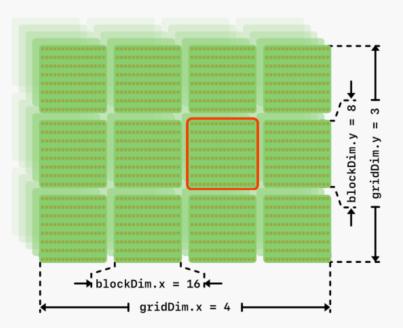
*************	 ************	************
*************	 ************	************
*************	 ************	*******

***********	 	*******
***********	 **********	******

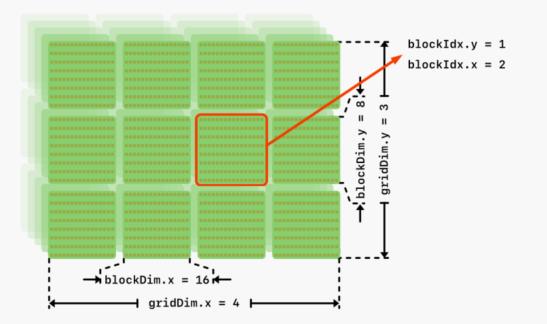
```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



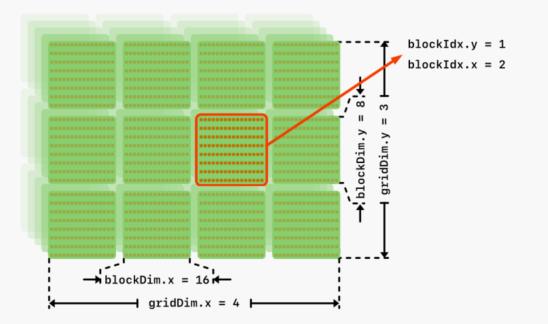
```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



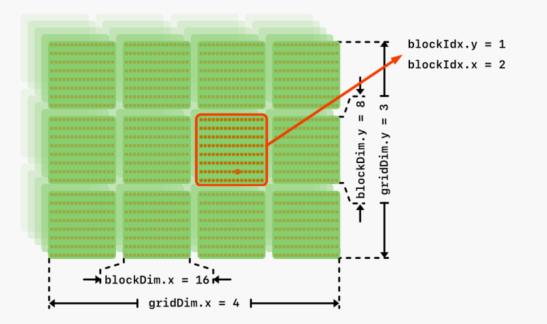
```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



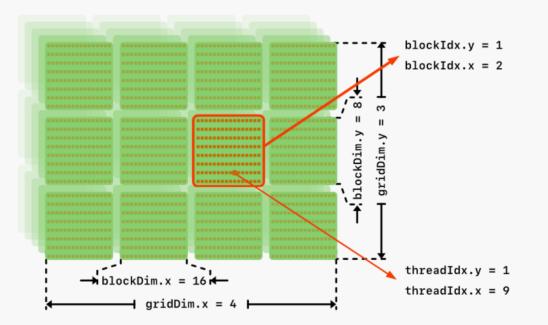
```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```

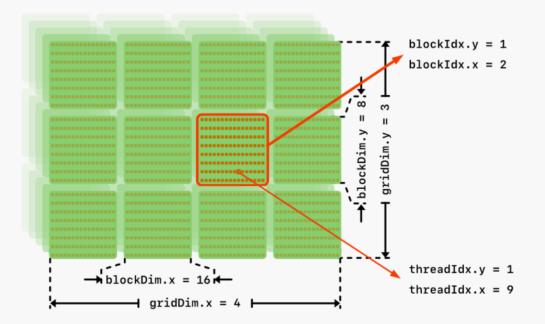


```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



Threads, blocks, grids

```
dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);
```



Variables available within kernel

- threadIdx.{x,y,z}
- blockIdx.{x,y,z}

- blockDim.{x,y,z}
- gridDim.{x,y,z}

Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \leftarrow a \cdot x_i + y_i, \ i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

Warp-up: port a simple code to GPU and investigate performance

Sources:/nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \gets a \cdot x_i + y_i, \ i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

• Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes

Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

Warp-up: port a simple code to GPU and investigate performance

Sources:/nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

• Allocation of memory on the GPU;

Warp-up: port a simple code to GPU and investigate performance

Sources:/nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

- Allocation of memory on the GPU;
- Transferring memory to/from GPU;

Warp-up: port a simple code to GPU and investigate performance

Sources:/nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

- Allocation of memory on the GPU;
- Transferring memory to/from GPU;
- Invoking kernels;

Warp-up: port a simple code to GPU and investigate performance

Sources:/nvme/scratch/da23/gpus/

• ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

 $y_i \leftarrow a \cdot x_i + y_i, i = 0, \dots, n-1$

with α scalar and y and x vectors of length n.

- Currently Implements this on the **CPU**. Uses OpenMP to multi-thread over the 20 cores (per socket) of the Cyclone cluster nodes
- We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

- Allocation of memory on the GPU;
- Transferring memory to/from GPU;
- Invoking kernels;
- Placement of threads and memory access

File: ex01/axpy.cu

- Contains the C program we will begin with: axpy.cu
- Even though the file extension is .cu, the program contains no CUDA. Only OpenMP
- Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line
- x0 and y0 are initialized to random numbers
- x1 and y1 are initialized to x0 and y0 respectively
- The program:
 - performs y0[:] = a x 0[:] + y0[:] in the first part marked with A:
 - performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:
 - reports the timing for part A and for B
 - reports the difference between y0 and y1

File: ex01/axpy.cu

- Contains the C program we will begin with: axpy.cu
- Even though the file extension is .cu, the program contains no CUDA. Only OpenMP
- Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line
- x0 and y0 are initialized to random numbers
- x1 and y1 are initialized to x0 and y0 respectively
- The program:
 - performs y0[:] = a x 0[:] + y0[:] in the first part marked with A:
 - performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:
 - reports the timing for part A and for B
 - reports the difference between y0 and y1

Take some time to inspect axpy.cu before we compile and run

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu
```

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu
```

• Compile with nvcc including OpenMP:

[user@front02 ex01]\$ module load gompi
[user@front02 ex01]\$ module load CUDA
[user@front02 ex01]\$ nvcc -03 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu

• -Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu
```

• Compile with nvcc including OpenMP:

```
[user@front02 ex01]$ module load gompi
[user@front02 ex01]$ module load CUDA
[user@front02 ex01]$ nvcc -03 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu
```

- -Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)
- Run on the CPUs of a GPU node
- Use srun to run interactively, e.g.:

```
[user@front02 ex01] export OMP_PROC_BIND="close"
[user@front02 ex01] export OMP_PLACES="cores"
[user@front02 ex01] export OMP_NUM_THREADS=20
[user@front02 ex01] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./a
CPU: nthr = 20 t0 = 0.0089 sec P = 15.024 Gflop/s B = 90.142 GB/s
CPU: nthr = 20 t0 = 0.0086 sec P = 15.667 Gflop/s B = 94.000 GB/s
Diff = 0.000000e+00
```

• Copy first exercise from this training's shared space:

```
[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu
```

• Compile with nvcc including OpenMP:

```
[user@front02 ex01]$ module load gompi
[user@front02 ex01]$ module load CUDA
[user@front02 ex01]$ nvcc -03 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu
```

- -Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)
- Run on the CPUs of a GPU node
- Use srun to run interactively, e.g.:

```
[user@front02 ex01] export OMP_PROC_BIND="close"
[user@front02 ex01] export OMP_PLACES="cores"
[user@front02 ex01] export OMP_NUM_THREADS=20
[user@front02 ex01] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./a
CPU: nthr = 20 t0 = 0.0089 sec P = 15.024 Gflop/s B = 90.142 GB/s
CPU: nthr = 20 t0 = 0.0086 sec P = 15.667 Gflop/s B = 94.000 GB/s
Diff = 0.000000e+00
```

• Compare ~90 GB/s achieved vs ~130 GB/s peak memory bandwidth

Use a GPU to replace part **B** of the calculation

- Edits outside of main():
 - 1. Add the cuda_runtime.h header file
 - 2. Add the GPU axpy kernel, naming it gpu_axpy()
 - 3. Add a function similar to ualloc() that allocates memory on the GPU and checks whether an error occured
- Edits within main():
 - 1. Allocate arrays on GPU
 - 2. Copy x1[:] and y1[:] to GPU
 - 3. Call gpu_axpy()
 - 4. Copy y1[:] from GPU

Edits outside of main() 1/3

• Add the cuda_runtime.h header file on line 5:

#include <cuda_runtime.h>

Edits outside of main() 2/3

• Add the GPU axpy kernel, naming it gpu_axpy(), after the CPU axpy, around line 64:

```
/***
* Do y <- a*x + y on the GPU
***/
global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
   for(int i=0; i<n; i++)
      y[i] = a*x[i] + y[i];
   return;
}</pre>
```

Edits outside of main() 3/3

• At around line 30 add a function similar to ualloc() that allocates memory on the GPU and checks whether an error occurred

```
/***
 * Allocate memory on GPU; print error if not successful
 ***/
void *
gpu_alloc(size_t size)
{
    void *ptr;
    cudaError_t err = cudaMalloc(&ptr, size);
    if(err != cudaSuccess) {
        fprintf(stderr, "cudaMalloc() returned %d; quitting...\n", err);
        exit(-2);
    }
    return ptr;
}
```

Edits within main() 1/4

• Allocate arrays on GPU, within B part. Free arrays before closing B part:

Edits within main() 2/4

Copy x1[:] and y1[:] to GPU

cudaMemcpy(d_x, x1, sizeof(float)*n, cudaMemcpyHostToDevice); cudaMemcpy(d_y, y1, sizeof(float)*n, cudaMemcpyHostToDevice);

Edits within main() 3/4

• Call gpu_axpy(). For the moment use 1 thread and 1 block. Replace axpy(n, a, x, y) of part B with:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
t0 = stop_watch(t0);
```

Note we need to pass the *device pointers* since it is these pointers that point to the memory allocated on the GPU

Edits within main() 4/4

• Copy y1[:] from GPU:

/* Copy y1 back from GPU */
cudaMemcpy(y1, d_y, sizeof(float)*n, cudaMemcpyDeviceToHost);

• Also change:

printf(" CPU: nthr = %4d ...)

to:

printf(" GPU: ...);

and remove OpenMP parallel region.

Compile and run

• Compile as before:

[user@front02 ex01]\$ nvcc -arch sm_70 -03 -Xcompiler -fopenmp -o axpy axpy.cu

• Run as before (I'm assuming OMP_BIND, OMP_PLACES, and OMP_NUM_THREADS were set before):

This performance is infeasible. What's going on?

Edits within main() 3/4

• The problem is here:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
t0 = stop_watch(t0);
```

- CUDA kernels return immediately; the kernel is still being executed on the device when stop_watch(t0) is called. We are not timing the kernel execution time, but the time it takes to dispatch the kernel to the GPU.
- Correct this by adding cudaDeviceSynchronize(); after the CUDA kernel, which blocks until all running CUDA kernels are complete:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

• Compile and run again:

• Compile and run again:

• This performance is of course extremely poor;

• Compile and run again:

- This performance is of course extremely poor;
- We're using only one GPU thread in the kernel

Use more threads

• In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

Use more threads

• In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

```
double t0 = stop_watch(0);
gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

• Then we need to change the kernel. We need in each GPU thread to calculate which elements it will operate on:

```
/***
* Do y <- a*x + y on the GPU
***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
    int ithr = threadIdx.x;
    int nthr = blockDim.x;
    int lt = n/nthr;
    for(int i=ithr*lt; i<(ithr+1)*lt; i++)
      y[i] = a*x[i] + y[i];
    return;
}</pre>
```

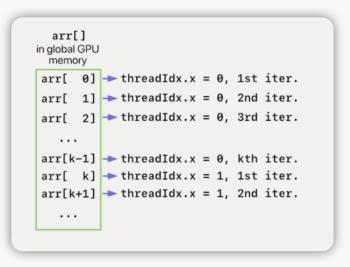
• With the above, each thread operated on n/nthr contiguous elements

• Compile and run again:

• Better than before, but still very poor performance. Can we do better?

Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

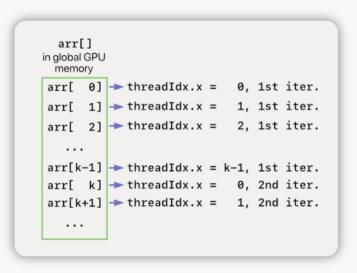


This represents the order by which elements are accessed currently

- The same thread accesses continuous elements
- Very common approach on CPUs
- On GPUs, this results in so-called *bank conflicts*
- Suboptimal!

Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations



This represents an optimal data access pattern

- Different threads accesses continuous elements
- Each thread is served by a different memory bank

Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

In our example:

```
/***
* Do y <- a*x + y on the GPU
***/
__global___void
gpu_axpy(int n, float a, float *x, float *y)
{
    int ithr = threadIdx.x;
    int nthr = blockDim.x;
    for(int i=0; i<n; i+=nthr)
       y[i+ithr] = a*x[i+ithr] + y[i+ithr];
    return;
}</pre>
```

• Compile and run:

Blocks and threads

Now let's use blocks. Let's use as many blocks and threads as we can

- Upper limit of 1024 threads
- Upper limit of $2^{31} 1$ blocks

```
double t0 = stop_watch(0);
int nthr = 1024;
gpu_axpy<<<n/nthr, nthr>>>(n, a, d_x, d_y);
cudaDeviceSynchronize();
t0 = stop_watch(t0);
```

```
/***
* Do y <- a*x + y on the GPU
***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
    int ithr = threadIdx.x;
    int nthr = blockDim.x;
    int iblk = blockIdx.x;
    int idx = ithr + iblk*nthr;
    y[idx] = a*x[idx] + y[idx];
    return;
}</pre>
```

Blocks and threads

• Compile and run:

```
[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics .,
CPU: nthr = 20 t0 = 0.0088 sec P = 15.188 Gflop/s B = 91.129 GB/s
GPU: t0 = 0.0011 sec P = 119.930 Gflop/s B = 719.578 GB/s
Diff = 1.021564e-15
```

• ~720 GB/s is ~80% of peak bandwidth (which is 900 GB/s)

Blocks and threads

• Compile and run:

- ~720 GB/s is ~80% of peak bandwidth (which is 900 GB/s)
- Try varying the number of threads per block. E.g. with 512 threads I got ~730 GB/s.

CUDA, another example

Exercise: rotate and shift an array of (x, y) coordinates

- ex02/rot.cu calls, as before, the same kernel twice
- Operation is $\vec{\nu}_i = U\vec{r}_i + \vec{s}_i$
- Where:

$$\mathbf{U} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

CUDA, another example

Exercise: rotate and shift an array of (x, y) coordinates

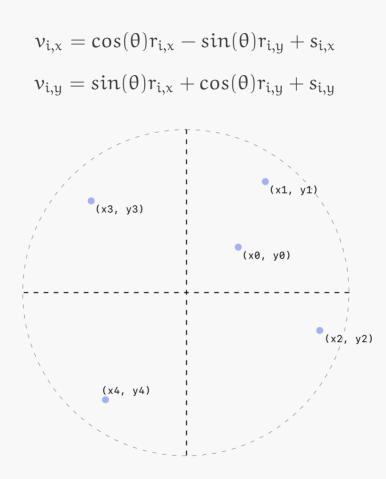
- ex02/rot.cu calls, as before, the same kernel twice
- Operation is $\vec{\nu}_i = U\vec{r}_i + \vec{s}_i$
- Where:

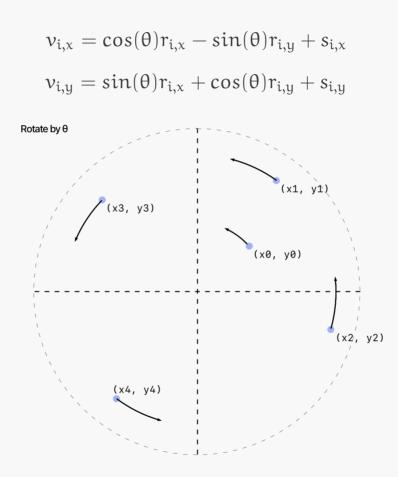
$$\mathbf{U} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

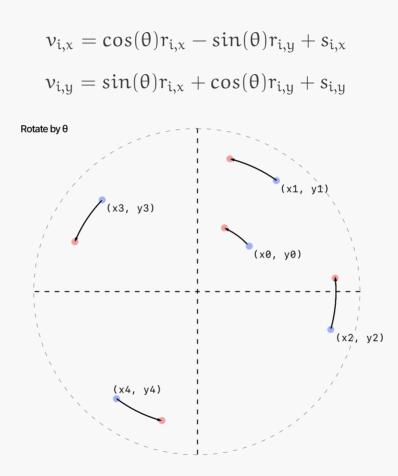
• Equivalently:

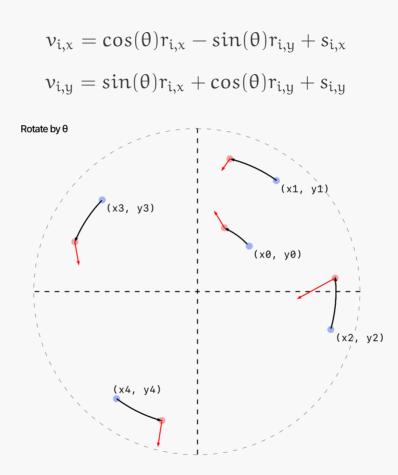
$$\begin{split} \nu_{i,x} &= \cos(\theta)r_{i,x} - \sin(\theta)r_{i,y} + s_{i,x} \\ \nu_{i,y} &= \sin(\theta)r_{i,x} + \cos(\theta)r_{i,y} + s_{i,y} \end{split}$$

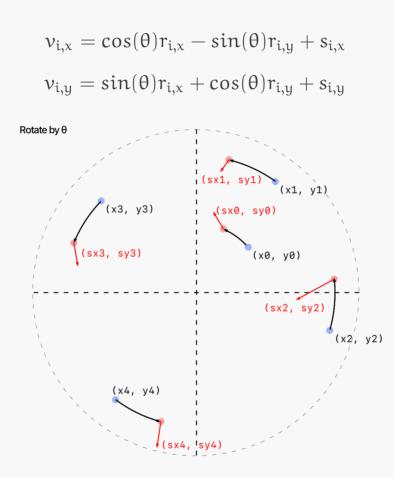
$$\begin{split} \nu_{i,x} &= \cos(\theta) r_{i,x} - \sin(\theta) r_{i,y} + s_{i,x} \\ \nu_{i,y} &= \sin(\theta) r_{i,x} + \cos(\theta) r_{i,y} + s_{i,y} \end{split}$$

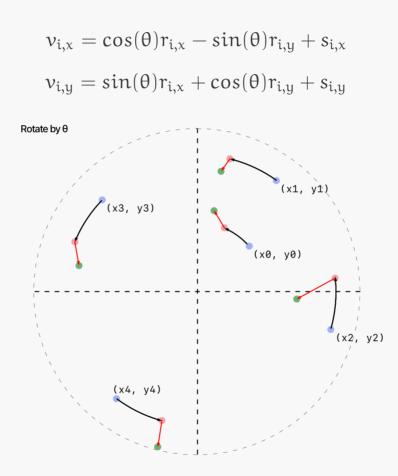


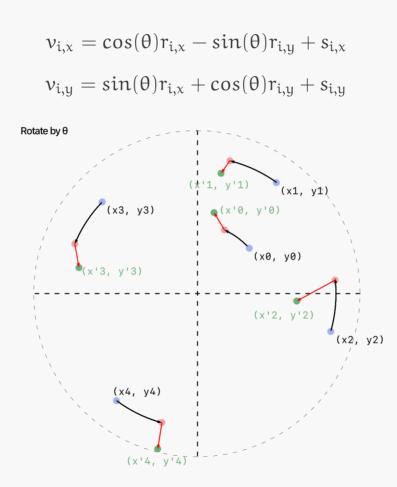












TODO, for a first version

- Implement a CUDA version for the second call
- Each GPU thread operating on one point (i)
- Pass number of GPU threads to use as command line argument, i.e. using argv[]

TODO, for a first version

- Implement a CUDA version for the second call
- Each GPU thread operating on one point (i)
- Pass number of GPU threads to use as command line argument, i.e. using argv[]

Example:

```
[user@front02 ex02] export OMP_PROC_BIND="close"
[user@front02 ex02] export OMP_PLACES="cores"
[user@front02 ex02] export OMP_NUM_THREADS=20
[user@front02 ex02] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./r
CPU: nthr = 20 t0 = 0.0610 sec P = 17.608 Gflop/s B = 52.823 GB/s
GPU: nthr = 32 t0 = 0.0069 sec P = 155.683 Gflop/s B = 467.049 GB/s
Diff = 1.115821e-15
```

TODO, for a first version

- Implement a CUDA version for the second call
- Each GPU thread operating on one point (i)
- Pass number of GPU threads to use as command line argument, i.e. using argv[]

Example:

```
[user@front02 ex02] export OMP_PROC_BIND="close"
[user@front02 ex02] export OMP PLACES="cores"
[user@front02 ex02] export OMP NUM THREADS=20
[user@front02 ex02] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
CPU: nthr = 20 t0 = 0.0610 sec P = 17.608 Gflop/s B = 52.823 GB/s
GPU: nthr = 32 t0 = 0.0069 sec
                                     P = 155.683 Gflop/s B = 467.049 GB/s
Diff = 1.115821e-15
* Do r <- U*r on the GPU using CUDA
***/
global void
qpu rotate(int n, coords *r out, float theta, coords *r in, coorsd *s)
 float ct = cos(theta);
 float st = sin(theta);
 int ithr = threadIdx.x:
 int nthr = blockDim.x;
 int iblk = blockIdx.x;
 int idx = (ithr + iblk*nthr);
 r_out[idx].x = ct*r_in[idx].x - st*r_in[idx].y + s[idx].x;
 r out[idx].y = st*r in[idx].x + ct*r in[idx].y + s[idx].y;
 return:
```

The optimal number of threads is not necessarily the maximum

• If we allow the number of threads to be a command line argument, we can easily scan for it

```
[user@font01 ex02]$ for((th=4; th<=1024; th*=2))</pre>
> do
> srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./rot $th $((1024*10))
> done 2>&1|grep GPU
 GPU: nthr = 4
                    t0 = 0.0514 sec
                                       P = 20.902 Gflop/s
                                                             B = 62.707 \text{ GB/s}
                                       P = 40.389 \text{ Gflop/s}
 GPU: nthr = 8
                    t0 = 0.0266 sec
                                                             B = 121.168 \text{ GB/s}
 GPU: nthr = 16
                    t0 = 0.0134 sec
                                       P = 80.393 Gflop/s
                                                             B = 241.178 \text{ GB/s}
 GPU: nthr = 32 t0 = 0.0067 sec
                                       P = 159.498 Gflop/s B = 478.495 GB/s
 <u>GPU: nthr = 64</u> t0 = 0.0049 sec
                                       P = 220.171 Gflop/s B = 660.513 GB/s
 GPU: nthr = 128 t0 = 0.0049 sec
                                       P = 217.839 Gflop/s B = 653.516 GB/s
 GPU: nthr = 256
                    t0 = 0.0049 sec
                                       P = 219.217 Gflop/s
                                                             B = 657.652 \text{ GB/s}
 GPU: nthr = 512
                                       P = 222.818 Gflop/s
                    t0 = 0.0048 sec
                                                             B = 668.454 \text{ GB/s}
                                       P = 221.852 Gflop/s
 GPU: nthr = 1024
                                                             B = 665.557 \text{ GB/s}
                    t0 = 0.0048 sec
```

The optimal number of threads is not necessarily the maximum

• If we allow the number of threads to be a command line argument, we can easily scan for it

```
[user@font01 ex02]$ for((th=4; th<=1024; th*=2))</pre>
> do
> srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./rot $th $((1024*10))
> done 2>\&1|grep GPU
 GPU: nthr = 4
                    t0 = 0.0514 sec
                                      P = 20.902 Gflop/s
                                                            B = 62.707 \text{ GB/s}
                                      P = 40.389 \text{ Gflop/s}
 GPU: nthr = 8 	 t0 = 0.0266 sec
                                                            B = 121.168 \text{ GB/s}
 GPU: nthr = 16 t0 = 0.0134 sec
                                      P = 80.393 Gflop/s
                                                            B = 241.178 \text{ GB/s}
 GPU: nthr = 32 t0 = 0.0067 sec
                                      P = 159.498 Gflop/s B = 478.495 GB/s
 <u>GPU: nthr = 64</u> t0 = 0.0049 sec
                                      P = 220.171 Gflop/s B = 660.513 GB/s
 GPU: nthr = 128 t0 = 0.0049 sec
                                      P = 217.839 Gflop/s B = 653.516 GB/s
 GPU: nthr = 256 t0 = 0.0049 sec
                                      P = 219.217 Gflop/s B = 657.652 GB/s
 GPU: nthr = 512
                                      P = 222.818 Gflop/s
                    t0 = 0.0048 sec
                                                            B = 668.454 \text{ GB/s}
 GPU: nthr = 1024
                                      P = 221.852 Gflop/s
                                                            B = 665.557 \text{ GB/s}
                    t0 = 0.0048 sec
```

• Tops at ~670 GBytes/s or ~75%. Can we do better?

Optimizations

- Note the loading of elements of r[] from global memory ⇒ two continuous component per thread
- Optimization opportunity: use one thread per component

Optimizations

- Note the loading of elements of r[] from global memory \Rightarrow two continuous component per thread
- Optimization opportunity: use one thread per component

 \Rightarrow Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

Optimizations

- Note the loading of elements of r[] from global memory \Rightarrow two continuous component per thread
- Optimization opportunity: use one thread per component

 \Rightarrow Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

- In other words, have:
 - even threads computing the x coordinate part of v[:]
 - odd threads computing the y coordinate of v[:]

Optimizations

- Note the loading of elements of r[] from global memory \Rightarrow two continuous component per thread
- Optimization opportunity: use one thread per component

 \Rightarrow Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

- In other words, have:
 - $\circ~$ even threads computing the x coordinate part of v[:]
 - odd threads computing the y coordinate of v[:]
- This will demonstrate the use of *shared memory*, i.e. fast memory which all threads in a single block can access

Optimizations

- Note the loading of elements of r[] from global memory \Rightarrow two continuous component per thread
- Optimization opportunity: use one thread per component

 \Rightarrow Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

- In other words, have:
 - $\circ~$ even threads computing the x coordinate part of v[:]
 - odd threads computing the y coordinate of v[:]
- This will demonstrate the use of *shared memory*, i.e. fast memory which all threads in a single block can access
- Shared memory is declared with the shared attribute, i.e.:

_shared__ float arr[SIZE];

Optimizations

- Note the loading of elements of r[] from global memory \Rightarrow two continuous component per thread
- Optimization opportunity: use one thread per component

 \Rightarrow Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

- In other words, have:
 - even threads computing the x coordinate part of v[:]
 - odd threads computing the y coordinate of v[:]
- This will demonstrate the use of *shared memory*, i.e. fast memory which all threads in a single block can access
- Shared memory is declared with the shared attribute, i.e.:

_shared__ float arr[SIZE];

• Note that here SIZE must be known at compile time

Optimizations

- Note the loading of elements of r[] from global memory \Rightarrow two continuous component per thread
- Optimization opportunity: use one thread per component

 \Rightarrow Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

- In other words, have:
 - even threads computing the x coordinate part of v[:]
 - odd threads computing the y coordinate of v[:]
- This will demonstrate the use of *shared memory*, i.e. fast memory which all threads in a single block can access
- Shared memory is declared with the shared attribute, i.e.:

_shared__ float arr[SIZE];

- Note that here SIZE must be known at compile time
- Alternatively, we can have dynamic allocation of shared memory (relatively recent CUDA feature)

Optimizations

• Below is how we would like to organize this calculation:

12=2*1
(x coord. of elem. i + 0) thread = 0; v[i2+0] = r[i2+0]*ct - r[i2+1]*st + s[i2+0]
(y coord. of elem. i + 0) thread = 1; v[i2+1] = r[i2+1]*ct + r[i2+0]*st + s[i2+1]
(x coord. of elem. i + 1) thread = 2; v[i2+2] = r[i2+2]*ct - r[i2+3]*st + s[i2+2]
(y coord. of elem. i + 1) thread = 3; v[i2+3] = r[i2+3]*ct + r[i2+2]*st + s[i2+3]
(x coord. of elem. i + 2) thread = 4; v[i2+4] = r[i2+4]*ct - r[i2+5]*st + s[i2+4]
(y coord. of elem. i + 2) thread = 5; v[i2+5] = r[i2+5]*ct + r[i2+4]*st + s[i2+5]
(x coord. of elem. i + 3) thread = 6; v[i2+6] = r[i2+6]*ct - r[i2+7]*st + s[i2+6]
(y coord. of elem. i + 3) thread = 7; v[i2+7] = r[i2+7]*ct + r[i2+6]*st + s[i2+7]

- Notice that odd threads and even threads carry out different operations
- But on a GPU, it is important for performance to have all threads in a kernel execute the **same** operations
- In other words, try to avoid as much as possible constructs like:

if(ithr % 2 == 0){ ... };

Optimizations

• First define a macro at the beginning of the file:

#define MAX_THR 1024

• Then, when invoking the kernel, change the call to use twice the number of blocks:

gpu_rotate<<<2*n/n_gpu_thr, n_gpu_thr>>>(n, d_v, theta, d_r, d_s);

Optimizations

• In the kernel, declare a shared array, to be used to store the elements of r[]:

___shared___**float** rr[MAX_THR];

Optimizations

• In the kernel, declare a shared array, to be used to store the elements of r[]:

_shared__ float rr[MAX_THR];

- We need a shared array for r[], because different threads will need to access the same elements. In particular, whether odd or even, each thread needs to access both x and y components of x[]
- By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from global memory, which is slow

Optimizations

• In the kernel, declare a shared array, to be used to store the elements of r[]:

_shared__ float rr[MAX_THR];

- We need a shared array for r[], because different threads will need to access the same elements. In particular, whether odd or even, each thread needs to access both x and y components of x[]
- By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from global memory, which is slow
- Read the elements of r[] corresponding to this block into rr[]:

int idx = iblk*nthr + ithr; rr[ithr] = r[idx];

Optimizations

• In the kernel, declare a shared array, to be used to store the elements of r[]:

_shared__ float rr[MAX_THR];

- We need a shared array for r[], because different threads will need to access the same elements. In particular, whether odd or even, each thread needs to access both x and y components of x[]
- By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from global memory, which is slow
- Read the elements of r[] corresponding to this block into rr[]:

```
int idx = iblk*nthr + ithr;
rr[ithr] = r[idx];
```

This way, the loading is done parallel: each thread reads in one component of r[]

Optimizations

• Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

Optimizations

• Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

• The operation is still incomplete; what we have achieved with the above is:

$$u_x \leftarrow \cos(\theta) r_x + s_x$$
 $u_y \leftarrow \cos(\theta) r_y + s_y$

Optimizations

• Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

• The operation is still incomplete; what we have achieved with the above is:

$$v_x \leftarrow \cos(\theta) r_x + s_x$$

 $v_y \leftarrow \cos(\theta) r_y + s_y$

we are missing:

 $v_x \leftarrow v_x - \sin(\theta)r_y$ $v_y \leftarrow v_y + \sin(\theta)r_x$

Optimizations

• We are missing:

 $\begin{aligned} \nu_x \leftarrow \nu_x - \sin(\theta) r_y \\ \nu_y \leftarrow \nu_y + \sin(\theta) r_x \end{aligned}$

Optimizations

• We are missing:

 $v_x \leftarrow v_x - \sin(\theta)r_y$ $v_y \leftarrow v_y + \sin(\theta)r_x$

• Consider the following:

int sw = 1 - 2*(ithr & 1);

Optimizations

• We are missing:

$$v_x \leftarrow v_x - \sin(\theta)r_y$$

 $v_y \leftarrow v_y + \sin(\theta)r_x$

• Consider the following:

int sw = 1 - 2*(ithr & 1);

- & is a bitwise "and" operation, meaning ithr & 1 will evaluate to:
- 0 if ithr is even
- 1 if ithr is odd

Optimizations

• We are missing:

 $v_x \leftarrow v_x - \sin(\theta)r_y$ $v_y \leftarrow v_y + \sin(\theta)r_x$

• Consider the following:

int sw = 1 - 2*(ithr & 1);

- & is a bitwise "and" operation, meaning ithr & 1 will evaluate to:
- 0 if ithr is even
- 1 if ithr is odd

sw = 1 - 2*(ithr & 1) therefore yields:

ithr = 0, 1, 2, 3, ... sw = 1, -1, 1, -1, ...

Optimizations

• We are missing:

 $v_x \leftarrow v_x - \sin(\theta)r_y$ $v_y \leftarrow v_y + \sin(\theta)r_x$

Optimizations

• We are missing:

$$v_x \leftarrow v_x - \sin(\theta) r_y$$
$$v_y \leftarrow v_y + \sin(\theta) r_x$$

• Consider:

rs = rs - sw*st*rr[ithr+sw];

Optimizations

• We are missing:

$$v_x \leftarrow v_x - \sin(\theta)r_y$$

 $v_y \leftarrow v_y + \sin(\theta)r_x$

• Consider:

rs = rs - sw*st*rr[ithr+sw];

• Then read back into out []:

out[idx] = rs;