
GPU programming using CUDA
\\

Data analytics in the era of large-scale machine learning

\\

Giannis Koutsou,

Computation-based Science and Technology Research Center,

The Cyprus Institute

1 / 60

Outline
Lecture part

Review of GPU architecture

Review of GPU programming and CUDA

Some details of our training system, "Cyclone"

2 / 60

Outline
Lecture part

Review of GPU architecture

Review of GPU programming and CUDA

Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs
Covering:

GPU performance vs CPU performance

Memory coalescing on GPUs

Shared memory

What is a warp and should you care

2 / 60

Outline
Lecture part

Review of GPU architecture

Review of GPU programming and CUDA

Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs
Covering:

GPU performance vs CPU performance

Memory coalescing on GPUs

Shared memory

What is a warp and should you care

Assumptions about this hands-on session
Some familiarity with programming in C or C++

Familiarity with some common tasks in C, e.g. array allocation, pointers, etc.

Can edit text files on a remote server, e.g. text-based (emacs or vim) or VS Code Remote

Hopefully this will be useful to capture high-level GPU features that affect performance

2 / 60

https://code.visualstudio.com/docs/remote/ssh

Outline
Lecture part

Review of GPU architecture

Review of GPU programming and CUDA

Some details of our training system, "Cyclone"

Hands-on - Practical examples on GPUs
Covering:

GPU performance vs CPU performance

Memory coalescing on GPUs

Shared memory

What is a warp and should you care

Assumptions about this hands-on session
Some familiarity with programming in C or C++

Familiarity with some common tasks in C, e.g. array allocation, pointers, etc.

Can edit text files on a remote server, e.g. text-based (emacs or vim) or VS Code Remote

Hopefully this will be useful to capture high-level GPU features that affect performance

Repo with slides (PDF) and exercises and URL for direct access to slides:

github.com/g-koutsou/NCC-training-202305

https://sds402.online/training

2 / 60

https://code.visualstudio.com/docs/remote/ssh
https://github.com/g-koutsou/NCC-training-202305
https://sds402.online/training

CPU

Few heavy cores

Large memory

Moderate BW to memory

Optimized for serial execution

GPU

Many light "cores"

Smaller memory

High BW to memory

Optimized for parallel execution

GPU architecture
At a very high level:

3 / 60

GPU programming model

Some numbers from the GPU partition of our Cyclone cluster

NVIDIA V100 Volta GPUs

80 Streaming Multiprocessors (SM) per GPU

64 "cores" per SM

GPU memory: 32 GBytes

Memory bandwidth: 900~GB/s

Peak performance: 7.8 Tflop/s (double precision)

4 / 60

GPU programming model

Some numbers from the GPU partition of our Cyclone cluster

NVIDIA V100 Volta GPUs

80 Streaming Multiprocessors (SM) per GPU

64 "cores" per SM

GPU memory: 32 GBytes

Memory bandwidth: 900~GB/s

Peak performance: 7.8 Tflop/s (double precision)

We will come back to these numbers during the hands-on

4 / 60

GPU programming model

"Offload" model of programming

CPU starts program (runs main())

CPU copies data to GPU memory (over e.g. PCIe, ~32 GB/s)

CPU dispatches "kernels" for execution on GPU

Kernels read/write to GPU memory (~900 GB/s)

Kernels run on GPU threads (thousands) which share fast memory [(10) times faster
compared to GPU memory]

Kernel completes; CPU copies data back from GPU (over e.g. PCIe, ~32 GB/s)

O

5 / 60

GPU programming model

GPU memory model (NVIDIA model)

GPU threads: slow access to global, constant, and texture memory

Each thread has registers (fast) and local memory (slow)

Threads are grouped into blocks; Threads within the same block: shared memory (fast)

Shared memory is limited. E.g. 96 KB per block for V100

6 / 60

GPU programming model

GPU memory model (NVIDIA model); some numbers for context

Threads per block: 1024 (max)

Register memory (per block): 64 KB

Shared memory (per block): 96 KB

Also, max. 255 registers per thread

7 / 60

GPU programming model

GPU memory model (NVIDIA model)

Assumptions about execution order

Threads within the same block can be assumed to run concurrently

No assumption about the order by which blocks are executed

8 / 60

CUDA programming model
NVIDIA programming framework for NVIDIA GPUs

Compute Unified Device Architecture

C-like programming language for writing CUDA Kernels

Includes C/C++ and Fortran variants

Compiler for C/C++: nvcc

Functions for transferring data to/from GPUs, starting kernels, etc.

Some higher-level functionality also available (linear algebra, random number generations, etc.)

Concepts generalizable to other accelerator programming frameworks (OpenCL, OpenACC, HiP,
etc.)

9 / 60

CUDA programming basics
Nomenclature

"Host" is the CPU

"Device" is the GPU

Allocate memory on GPU

err = cudaMalloc(&d_ptr, size);

Call from host (CPU)

Allocate size bytes of memory on GPU and store the starting address in d_ptr

d_ptr is a variable that holds an address to GPU memory i.e. a "device pointer"

If err != cudaSuccess then something went wrong

Free GPU memory

cudaFree(d_ptr);

10 / 60

CUDA programming basics
Nomenclature

"Host" is the CPU

"Device" is the GPU

Copy data to GPU

cudaMemcpy(d_ptr, ptr, size, cudaMemcpyHostToDevice);

Call from host (CPU)

Copy data on host pointed to by ptr to device at address pointed to by d_ptr

Device memory should have been allocated using cudaMalloc() to obtain d_ptr

Copy data from GPU

cudaMemcpy(ptr, d_ptr, size, cudaMemcpyDeviceToHost);

Call from host (CPU)

Copy data on device pointed to by d_ptr to host at address pointed to by ptr

Host memory should have been allocated using e.g. malloc() to obtain ptr

11 / 60

CUDA programming basics
Declare a CUDA kernel

Example:

__global__ void
func(int n, double a, double *x)
{
 ...
 return;
}

Call a CUDA kernel

Call from host. Example:

func<<<nblck, nthr>>>(n, a, x);

nthr: number of threads per block; can be scalar or a dim3 type

nblck: number of blocks; can be scalar or a dim3 type

Example of dim3 type:

dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */

12 / 60

CUDA programming basics
Call a CUDA kernel

Call from host. Example:

func<<<nblck, nthr>>>(n, a, x);

nthr: number of threads per block; can be scalar or a dim3 type

nblck: number of blocks; can be scalar or a dim3 type

Example of dim3 type:

dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */

Thread coordinates within kernel

Example:

__global__ void
func(int n, double a, double *x)
{
 int idx = threadIdx.x + blockIdx.x*blockDim.x;
 ...
 return;
}

13 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

14 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

15 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

16 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

17 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

18 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

19 / 60

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

20 / 60

threadIdx.{x,y,z}

blockIdx.{x,y,z}

blockDim.{x,y,z}

gridDim.{x,y,z}

CUDA programming basics
Threads, blocks, grids

dim3 blcks(4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

Variables available within kernel

21 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 20 cores (per
socket) of the Cyclone cluster nodes

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 20 cores (per
socket) of the Cyclone cluster nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 20 cores (per
socket) of the Cyclone cluster nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 20 cores (per
socket) of the Cyclone cluster nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Transferring memory to/from GPU;

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 20 cores (per
socket) of the Cyclone cluster nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Transferring memory to/from GPU;

Invoking kernels;

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA, by example
Warp-up: port a simple code to GPU and investigate performance

Sources: /nvme/scratch/da23/gpus/

ex01/axpy.cu implements a so-called "axpy" operation (a-times-x-plus-y):

with scalar and and vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 20 cores (per
socket) of the Cyclone cluster nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Transferring memory to/from GPU;

Invoking kernels;

Placement of threads and memory access

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 60

CUDA Example
File: ex01/axpy.cu

Contains the C program we will begin with: axpy.cu

Even though the file extension is .cu, the program contains no CUDA. Only OpenMP

Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line

x0 and y0 are initialized to random numbers

x1 and y1 are initialized to x0 and y0 respectively

The program:

performs y0[:] = a*x0[:] + y0[:] in the first part marked with A:

performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:

reports the timing for part A and for B

reports the difference between y0 and y1

23 / 60

CUDA Example
File: ex01/axpy.cu

Contains the C program we will begin with: axpy.cu

Even though the file extension is .cu, the program contains no CUDA. Only OpenMP

Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line

x0 and y0 are initialized to random numbers

x1 and y1 are initialized to x0 and y0 respectively

The program:

performs y0[:] = a*x0[:] + y0[:] in the first part marked with A:

performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:

reports the timing for part A and for B

reports the difference between y0 and y1

Take some time to inspect axpy.cu before we compile and run

23 / 60

CUDA Example
Copy first exercise from this training's shared space:

[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu

24 / 60

CUDA Example
Copy first exercise from this training's shared space:

[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu

Compile with nvcc including OpenMP:

[user@front02 ex01]$ module load gompi
[user@front02 ex01]$ module load CUDA
[user@front02 ex01]$ nvcc -O3 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

24 / 60

CUDA Example
Copy first exercise from this training's shared space:

[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu

Compile with nvcc including OpenMP:

[user@front02 ex01]$ module load gompi
[user@front02 ex01]$ module load CUDA
[user@front02 ex01]$ nvcc -O3 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

Run on the CPUs of a GPU node

Use srun to run interactively, e.g.:

[user@front02 ex01] export OMP_PROC_BIND="close"
[user@front02 ex01] export OMP_PLACES="cores"
[user@front02 ex01] export OMP_NUM_THREADS=20
[user@front02 ex01] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./a
 CPU: nthr = 20 t0 = 0.0089 sec P = 15.024 Gflop/s B = 90.142 GB/s
 CPU: nthr = 20 t0 = 0.0086 sec P = 15.667 Gflop/s B = 94.000 GB/s
 Diff = 0.000000e+00

24 / 60

CUDA Example
Copy first exercise from this training's shared space:

[user@front02 ~]$ cp -r /nvme/scratch/da23/gpus/ex01 .
[user@front02 ~]$ cd ex01/
[user@front02 ex01]$ ls -1
axpy.cu

Compile with nvcc including OpenMP:

[user@front02 ex01]$ module load gompi
[user@front02 ex01]$ module load CUDA
[user@front02 ex01]$ nvcc -O3 -arch sm_70 -Xcompiler -fopenmp -o axpy axpy.cu

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

Run on the CPUs of a GPU node

Use srun to run interactively, e.g.:

[user@front02 ex01] export OMP_PROC_BIND="close"
[user@front02 ex01] export OMP_PLACES="cores"
[user@front02 ex01] export OMP_NUM_THREADS=20
[user@front02 ex01] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./a
 CPU: nthr = 20 t0 = 0.0089 sec P = 15.024 Gflop/s B = 90.142 GB/s
 CPU: nthr = 20 t0 = 0.0086 sec P = 15.667 Gflop/s B = 94.000 GB/s
 Diff = 0.000000e+00

Compare ~90 GB/s achieved vs ~130 GB/s peak memory bandwidth

24 / 60

CUDA Example
Use a GPU to replace part B of the calculation

Edits outside of main():

1. Add the cuda_runtime.h header file

2. Add the GPU axpy kernel, naming it gpu_axpy()

3. Add a function similar to ualloc() that allocates memory on the GPU and checks whether an
error occured

Edits within main():

1. Allocate arrays on GPU

2. Copy x1[:] and y1[:] to GPU

3. Call gpu_axpy()

4. Copy y1[:] from GPU

25 / 60

CUDA Example
Edits outside of main() 1/3

Add the cuda_runtime.h header file on line 5:

#include <cuda_runtime.h>

26 / 60

CUDA Example
Edits outside of main() 2/3

Add the GPU axpy kernel, naming it gpu_axpy(), after the CPU axpy, around line 64:

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
 for(int i=0; i<n; i++)
 y[i] = a*x[i] + y[i];

 return;
}

27 / 60

CUDA Example
Edits outside of main() 3/3

At around line 30 add a function similar to ualloc() that allocates memory on the GPU and checks
whether an error occurred

/***
 * Allocate memory on GPU; print error if not successful
 ***/
void *
gpu_alloc(size_t size)
{
 void *ptr;
 cudaError_t err = cudaMalloc(&ptr, size);
 if(err != cudaSuccess) {
 fprintf(stderr, "cudaMalloc() returned %d; quitting...\n", err);
 exit(-2);
 }
 return ptr;
}

28 / 60

CUDA Example
Edits within main() 1/4

Allocate arrays on GPU, within B part. Free arrays before closing B part:

/*
 * B: Run axpy(), return to y1, report performance
 */
 {
 /* Allocate GPU memory */
 float *d_x = (float *)gpu_alloc(n*sizeof(float));
 float *d_y = (float *)gpu_alloc(n*sizeof(float));
 ...
 cudaFree(d_x);
 cudaFree(d_y);
 }

29 / 60

CUDA Example
Edits within main() 2/4

Copy x1[:] and y1[:] to GPU

 cudaMemcpy(d_x, x1, sizeof(float)*n, cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y1, sizeof(float)*n, cudaMemcpyHostToDevice);

30 / 60

CUDA Example
Edits within main() 3/4

Call gpu_axpy(). For the moment use 1 thread and 1 block. Replace axpy(n, a, x, y) of part B with:

 double t0 = stop_watch(0);
 gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
 t0 = stop_watch(t0);

Note we need to pass the device pointers since it is these pointers that point to the memory allocated
on the GPU

31 / 60

CUDA Example
Edits within main() 4/4

Copy y1[:] from GPU:

/* Copy y1 back from GPU */
cudaMemcpy(y1, d_y, sizeof(float)*n, cudaMemcpyDeviceToHost);

Also change:

printf(" CPU: nthr = %4d ...);

to:

printf(" GPU: ...);

and remove OpenMP parallel region.

32 / 60

CUDA Example
Compile and run

Compile as before:

 [user@front02 ex01]$ nvcc -arch sm_70 -O3 -Xcompiler -fopenmp -o axpy axpy.cu

Run as before (I'm assuming OMP_BIND, OMP_PLACES, and OMP_NUM_THREADS were set before):

[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 20 t0 = 0.0089 sec P = 15.035 Gflop/s B = 90.212 GB/s
 GPU: t0 = 0.0000 sec P = 3198.579 Gflop/s B = 19191.476 GB/s
 Diff = 1.021564e-15

This performance is infeasible. What's going on?

33 / 60

CUDA Example
Edits within main() 3/4

The problem is here:

 double t0 = stop_watch(0);
 gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
 t0 = stop_watch(t0);

CUDA kernels return immediately; the kernel is still being executed on the device when
stop_watch(t0) is called. We are not timing the kernel execution time, but the time it takes to
dispatch the kernel to the GPU.

Correct this by adding cudaDeviceSynchronize(); after the CUDA kernel, which blocks until all
running CUDA kernels are complete:

 double t0 = stop_watch(0);
 gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
 cudaDeviceSynchronize();
 t0 = stop_watch(t0);

34 / 60

CUDA Example
Compile and run again:

[user@front02 ex01]$ nvcc -arch sm_70 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 20 t0 = 0.0088 sec P = 15.199 Gflop/s B = 91.193 GB/s
 GPU: t0 = 3.9670 sec P = 0.034 Gflop/s B = 0.203 GB/s
 Diff = 1.021564e-15

35 / 60

CUDA Example
Compile and run again:

[user@front02 ex01]$ nvcc -arch sm_70 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 20 t0 = 0.0088 sec P = 15.199 Gflop/s B = 91.193 GB/s
 GPU: t0 = 3.9670 sec P = 0.034 Gflop/s B = 0.203 GB/s
 Diff = 1.021564e-15

This performance is of course extremely poor;

35 / 60

CUDA Example
Compile and run again:

[user@front02 ex01]$ nvcc -arch sm_70 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 20 t0 = 0.0088 sec P = 15.199 Gflop/s B = 91.193 GB/s
 GPU: t0 = 3.9670 sec P = 0.034 Gflop/s B = 0.203 GB/s
 Diff = 1.021564e-15

This performance is of course extremely poor;

We're using only one GPU thread in the kernel

35 / 60

CUDA Example
Use more threads

In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

 double t0 = stop_watch(0);
 gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
 cudaDeviceSynchronize();
 t0 = stop_watch(t0);

36 / 60

CUDA Example
Use more threads

In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

 double t0 = stop_watch(0);
 gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
 cudaDeviceSynchronize();
 t0 = stop_watch(t0);

Then we need to change the kernel. We need in each GPU thread to calculate which elements it
will operate on:

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
 int ithr = threadIdx.x;
 int nthr = blockDim.x;
 int lt = n/nthr;
 for(int i=ithr*lt; i<(ithr+1)*lt; i++)
 y[i] = a*x[i] + y[i];
 return;
}

With the above, each thread operated on n/nthr contiguous elements

36 / 60

CUDA Example
Compile and run again:

[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 8 t0 = 0.0064 sec P = 2.628 Gflop/s B = 15.765 GB/s
 GPU: t0 = 0.1316 sec P = 0.127 Gflop/s B = 0.765 GB/s
 Diff = 1.022961e-15

Better than before, but still very poor performance. Can we do better?

37 / 60

This represents the order by which elements are
accessed currently

The same thread accesses continuous
elements

Very common approach on CPUs

On GPUs, this results in so-called bank
conflicts

Suboptimal!

CUDA Example
Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory
locations

38 / 60

This represents an optimal data access pattern

Different threads accesses continuous
elements

Each thread is served by a different
memory bank

CUDA Example
Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory
locations

39 / 60

CUDA Example
Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory
locations

In our example:

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
 int ithr = threadIdx.x;
 int nthr = blockDim.x;
 for(int i=0; i<n; i+=nthr)
 y[i+ithr] = a*x[i+ithr] + y[i+ithr];
 return;
}

Compile and run:

[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics .
 CPU: nthr = 20 t0 = 0.0097 sec P = 13.788 Gflop/s B = 82.730 GB/s
 GPU: t0 = 0.0665 sec P = 2.018 Gflop/s B = 12.111 GB/s
 Diff = 1.021564e-15

40 / 60

CUDA Example
Blocks and threads

Now let's use blocks. Let's use as many blocks and threads as we can

Upper limit of 1024 threads

Upper limit of blocks

 double t0 = stop_watch(0);
 int nthr = 1024;
 gpu_axpy<<<n/nthr, nthr>>>(n, a, d_x, d_y);
 cudaDeviceSynchronize();
 t0 = stop_watch(t0);

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
 int ithr = threadIdx.x;
 int nthr = blockDim.x;
 int iblk = blockIdx.x;
 int idx = ithr + iblk*nthr;
 y[idx] = a*x[idx] + y[idx];
 return;
}

− 1231

41 / 60

CUDA Example
Blocks and threads

Compile and run:

[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 20 t0 = 0.0088 sec P = 15.188 Gflop/s B = 91.129 GB/s
 GPU: t0 = 0.0011 sec P = 119.930 Gflop/s B = 719.578 GB/s
 Diff = 1.021564e-15

~720 GB/s is ~80% of peak bandwidth (which is 900 GB/s)

42 / 60

CUDA Example
Blocks and threads

Compile and run:

[user@front02 ex01]$ srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./
 CPU: nthr = 20 t0 = 0.0088 sec P = 15.188 Gflop/s B = 91.129 GB/s
 GPU: t0 = 0.0011 sec P = 119.930 Gflop/s B = 719.578 GB/s
 Diff = 1.021564e-15

~720 GB/s is ~80% of peak bandwidth (which is 900 GB/s)

Try varying the number of threads per block. E.g. with 512 threads I got ~730 GB/s.

42 / 60

CUDA, another example
Exercise: rotate and shift an array of coordinates

ex02/rot.cu calls, as before, the same kernel twice

Operation is

Where:

(x, y)

= U +v⃗i r⃗i s⃗i

U = ()
cos(θ)

sin(θ)

−sin(θ)

cos(θ)

43 / 60

CUDA, another example
Exercise: rotate and shift an array of coordinates

ex02/rot.cu calls, as before, the same kernel twice

Operation is

Where:

Equivalently:

(x, y)

= U +v⃗i r⃗i s⃗i

U = ()
cos(θ)

sin(θ)

−sin(θ)

cos(θ)

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

43 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

44 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

45 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

46 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

47 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

48 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

49 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

50 / 60

Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y

51 / 60

Coordinate transformation using CUDA
TODO, for a first version

Implement a CUDA version for the second call

Each GPU thread operating on one point ()

Pass number of GPU threads to use as command line argument, i.e. using argv[]

i

52 / 60

Coordinate transformation using CUDA
TODO, for a first version

Implement a CUDA version for the second call

Each GPU thread operating on one point ()

Pass number of GPU threads to use as command line argument, i.e. using argv[]

Example:

[user@front02 ex02] export OMP_PROC_BIND="close"
[user@front02 ex02] export OMP_PLACES="cores"
[user@front02 ex02] export OMP_NUM_THREADS=20
[user@front02 ex02] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./r
 CPU: nthr = 20 t0 = 0.0610 sec P = 17.608 Gflop/s B = 52.823 GB/s
 GPU: nthr = 32 t0 = 0.0069 sec P = 155.683 Gflop/s B = 467.049 GB/s
 Diff = 1.115821e-15

i

52 / 60

Coordinate transformation using CUDA
TODO, for a first version

Implement a CUDA version for the second call

Each GPU thread operating on one point ()

Pass number of GPU threads to use as command line argument, i.e. using argv[]

Example:

[user@front02 ex02] export OMP_PROC_BIND="close"
[user@front02 ex02] export OMP_PLACES="cores"
[user@front02 ex02] export OMP_NUM_THREADS=20
[user@front02 ex02] srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./r
 CPU: nthr = 20 t0 = 0.0610 sec P = 17.608 Gflop/s B = 52.823 GB/s
 GPU: nthr = 32 t0 = 0.0069 sec P = 155.683 Gflop/s B = 467.049 GB/s
 Diff = 1.115821e-15

/***
 * Do r <- U*r on the GPU using CUDA
 ***/
__global__ void
gpu_rotate(int n, coords *r_out, float theta, coords *r_in, coorsd *s)
{
 float ct = cos(theta);
 float st = sin(theta);

 int ithr = threadIdx.x;
 int nthr = blockDim.x;
 int iblk = blockIdx.x;
 int idx = (ithr + iblk*nthr);

 r_out[idx].x = ct*r_in[idx].x - st*r_in[idx].y + s[idx].x;
 r_out[idx].y = st*r_in[idx].x + ct*r_in[idx].y + s[idx].y;

 return;
}

i

52 / 60

Coordinate transformation using CUDA
The optimal number of threads is not necessarily the maximum

If we allow the number of threads to be a command line argument, we can easily scan for it

[user@font01 ex02]$ for((th=4; th<=1024; th*=2))
> do
> srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./rot $th $((1024*102
> done 2>&1|grep GPU
 GPU: nthr = 4 t0 = 0.0514 sec P = 20.902 Gflop/s B = 62.707 GB/s
 GPU: nthr = 8 t0 = 0.0266 sec P = 40.389 Gflop/s B = 121.168 GB/s
 GPU: nthr = 16 t0 = 0.0134 sec P = 80.393 Gflop/s B = 241.178 GB/s
 GPU: nthr = 32 t0 = 0.0067 sec P = 159.498 Gflop/s B = 478.495 GB/s
 GPU: nthr = 64 t0 = 0.0049 sec P = 220.171 Gflop/s B = 660.513 GB/s
 GPU: nthr = 128 t0 = 0.0049 sec P = 217.839 Gflop/s B = 653.516 GB/s
 GPU: nthr = 256 t0 = 0.0049 sec P = 219.217 Gflop/s B = 657.652 GB/s
 GPU: nthr = 512 t0 = 0.0048 sec P = 222.818 Gflop/s B = 668.454 GB/s
 GPU: nthr = 1024 t0 = 0.0048 sec P = 221.852 Gflop/s B = 665.557 GB/s

53 / 60

Coordinate transformation using CUDA
The optimal number of threads is not necessarily the maximum

If we allow the number of threads to be a command line argument, we can easily scan for it

[user@font01 ex02]$ for((th=4; th<=1024; th*=2))
> do
> srun -n 1 --cpus-per-task=20 -p gpu -A da23 --gres=gpu:1 --reservation=data-analytics ./rot $th $((1024*102
> done 2>&1|grep GPU
 GPU: nthr = 4 t0 = 0.0514 sec P = 20.902 Gflop/s B = 62.707 GB/s
 GPU: nthr = 8 t0 = 0.0266 sec P = 40.389 Gflop/s B = 121.168 GB/s
 GPU: nthr = 16 t0 = 0.0134 sec P = 80.393 Gflop/s B = 241.178 GB/s
 GPU: nthr = 32 t0 = 0.0067 sec P = 159.498 Gflop/s B = 478.495 GB/s
 GPU: nthr = 64 t0 = 0.0049 sec P = 220.171 Gflop/s B = 660.513 GB/s
 GPU: nthr = 128 t0 = 0.0049 sec P = 217.839 Gflop/s B = 653.516 GB/s
 GPU: nthr = 256 t0 = 0.0049 sec P = 219.217 Gflop/s B = 657.652 GB/s
 GPU: nthr = 512 t0 = 0.0048 sec P = 222.818 Gflop/s B = 668.454 GB/s
 GPU: nthr = 1024 t0 = 0.0048 sec P = 221.852 Gflop/s B = 665.557 GB/s

Tops at ~670 GBytes/s or ~75%. Can we do better?

53 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single
component of the coordinate

⇒

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single
component of the coordinate

In other words, have:

even threads computing the x coordinate part of v[:]

odd threads computing the y coordinate of v[:]

⇒

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single
component of the coordinate

In other words, have:

even threads computing the x coordinate part of v[:]

odd threads computing the y coordinate of v[:]

This will demonstrate the use of shared memory, i.e. fast memory which all threads in a single
block can access

⇒

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single
component of the coordinate

In other words, have:

even threads computing the x coordinate part of v[:]

odd threads computing the y coordinate of v[:]

This will demonstrate the use of shared memory, i.e. fast memory which all threads in a single
block can access

Shared memory is declared with the shared attribute, i.e.:

__shared__ float arr[SIZE];

⇒

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single
component of the coordinate

In other words, have:

even threads computing the x coordinate part of v[:]

odd threads computing the y coordinate of v[:]

This will demonstrate the use of shared memory, i.e. fast memory which all threads in a single
block can access

Shared memory is declared with the shared attribute, i.e.:

__shared__ float arr[SIZE];

Note that here SIZE must be known at compile time

⇒

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory two continuous component per
thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single
component of the coordinate

In other words, have:

even threads computing the x coordinate part of v[:]

odd threads computing the y coordinate of v[:]

This will demonstrate the use of shared memory, i.e. fast memory which all threads in a single
block can access

Shared memory is declared with the shared attribute, i.e.:

__shared__ float arr[SIZE];

Note that here SIZE must be known at compile time

Alternatively, we can have dynamic allocation of shared memory (relatively recent CUDA
feature)

⇒

⇒

54 / 60

Coordinate transformation using CUDA
Optimizations

Below is how we would like to organize this calculation:

i2=2*i
(x coord. of elem. i + 0) thread = 0; v[i2+0] = r[i2+0]*ct - r[i2+1]*st + s[i2+0]
(y coord. of elem. i + 0) thread = 1; v[i2+1] = r[i2+1]*ct + r[i2+0]*st + s[i2+1]
(x coord. of elem. i + 1) thread = 2; v[i2+2] = r[i2+2]*ct - r[i2+3]*st + s[i2+2]
(y coord. of elem. i + 1) thread = 3; v[i2+3] = r[i2+3]*ct + r[i2+2]*st + s[i2+3]
(x coord. of elem. i + 2) thread = 4; v[i2+4] = r[i2+4]*ct - r[i2+5]*st + s[i2+4]
(y coord. of elem. i + 2) thread = 5; v[i2+5] = r[i2+5]*ct + r[i2+4]*st + s[i2+5]
(x coord. of elem. i + 3) thread = 6; v[i2+6] = r[i2+6]*ct - r[i2+7]*st + s[i2+6]
(y coord. of elem. i + 3) thread = 7; v[i2+7] = r[i2+7]*ct + r[i2+6]*st + s[i2+7]
...

Notice that odd threads and even threads carry out different operations

But on a GPU, it is important for performance to have all threads in a kernel execute the same
operations

In other words, try to avoid as much as possible constructs like:
if(ithr % 2 == 0){ ... };

55 / 60

Coordinate transformation using CUDA
Optimizations

First define a macro at the beginning of the file:

#define MAX_THR 1024

Then, when invoking the kernel, change the call to use twice the number of blocks:

gpu_rotate<<<2*n/n_gpu_thr, n_gpu_thr>>>(n, d_v, theta, d_r, d_s);

56 / 60

Coordinate transformation using CUDA
Optimizations

In the kernel, declare a shared array, to be used to store the elements of r[]:

__shared__ float rr[MAX_THR];

57 / 60

Coordinate transformation using CUDA
Optimizations

In the kernel, declare a shared array, to be used to store the elements of r[]:

__shared__ float rr[MAX_THR];

We need a shared array for r[], because different threads will need to access the same elements.
In particular, whether odd or even, each thread needs to access both x and y components of x[]

By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from
global memory, which is slow

57 / 60

Coordinate transformation using CUDA
Optimizations

In the kernel, declare a shared array, to be used to store the elements of r[]:

__shared__ float rr[MAX_THR];

We need a shared array for r[], because different threads will need to access the same elements.
In particular, whether odd or even, each thread needs to access both x and y components of x[]

By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from
global memory, which is slow

Read the elements of r[] corresponding to this block into rr[]:

 int idx = iblk*nthr + ithr;
 rr[ithr] = r[idx];

57 / 60

Coordinate transformation using CUDA
Optimizations

In the kernel, declare a shared array, to be used to store the elements of r[]:

__shared__ float rr[MAX_THR];

We need a shared array for r[], because different threads will need to access the same elements.
In particular, whether odd or even, each thread needs to access both x and y components of x[]

By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from
global memory, which is slow

Read the elements of r[] corresponding to this block into rr[]:

 int idx = iblk*nthr + ithr;
 rr[ithr] = r[idx];

This way, the loading is done parallel: each thread reads in one component of r[]

57 / 60

Coordinate transformation using CUDA
Optimizations

Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

58 / 60

Coordinate transformation using CUDA
Optimizations

Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

The operation is still incomplete; what we have achieved with the above is:

← cos(θ) +vx rx sx

← cos(θ) +vy ry sy

58 / 60

Coordinate transformation using CUDA
Optimizations

Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

The operation is still incomplete; what we have achieved with the above is:

we are missing:

← cos(θ) +vx rx sx

← cos(θ) +vy ry sy

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

58 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

59 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

Consider the following:

int sw = 1 - 2*(ithr & 1);

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

59 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

Consider the following:

int sw = 1 - 2*(ithr & 1);

& is a bitwise "and" operation, meaning ithr & 1 will evaluate to:

0 if ithr is even

1 if ithr is odd

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

59 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

Consider the following:

int sw = 1 - 2*(ithr & 1);

& is a bitwise "and" operation, meaning ithr & 1 will evaluate to:

0 if ithr is even

1 if ithr is odd

sw = 1 - 2*(ithr & 1) therefore yields:

ithr = 0, 1, 2, 3, ...
sw = 1, -1, 1, -1, ...

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

59 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

60 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

Consider:

rs = rs - sw*st*rr[ithr+sw];

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

60 / 60

Coordinate transformation using CUDA
Optimizations

We are missing:

Consider:

rs = rs - sw*st*rr[ithr+sw];

Then read back into out[]:

 out[idx] = rs;

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx

60 / 60

