Introduction to Data Analysis

with AI Algorithms

Part - II

Dr. Nikolaos Bakas

Theoretical Aspects

- What is an Artificial Neural Network (ANN)
- How we train an ANN
- Parallelism in Deep Learning
 - How Parallel Stochastic Gradient
 Descent works
 - Results with Distributed GPUs

Applications

- Real Estate
- Dentistry
- Civil Engineering
- Literature Reviews
- Product Recommendation
- Object Detection

https://castorc.cyi.ac.cy/

Introduction to Data Analysis with AI Algorithms

- Theoretical Aspects
- Parallelism in Al
- Applications

Introduction to Data Analysis with AI Algorithms

Develop a **Machine**, which will **Learn**,

to Predict the Output, for new Input

A fundamental problem

$$f(x_N + h_j) = f(x_N) + h_j f'(x_N) + \frac{h_j^2}{2} f''(x_N) + \dots + \frac{h_j^n}{n!} f^{(n)}(x_N)$$

Fourier Series

$$s_N(x) = rac{a_0}{2} + \sum_{n=1}^N \left(a_n \cos \left(rac{2\pi n x}{P}
ight) + b_n \sin \left(rac{2\pi n x}{P}
ight)
ight)$$

Radial Basis Functions

Artificial Neural Networks

$$f(\mathbf{x}) = \sum_{k=1}^{N} \left(\sum_{j=1}^{n} w_{jk} \varphi_j(\mathbf{x}) \right) v_k + b_0$$

$$y_i \cong f_i(x_{i1}, x_{i2}, \dots, x_{in}) = \sum_{k=1}^N v_k \sigma \left(\sum_{j=1}^n w_{jk} x_{ij} + b_k \right) + b_0$$

Function Approximation

Let x_{ij} be some given data of $j \in \{1, 2, ..., n\}$ input variables in $i \in \{1, 2, ..., m\}$ observations of y_i responses.

The Universal Approximation Theorem ensures the existence of an integer N, such that

$$y_i \cong f_i(x_{i1}, x_{i2}, \dots, x_{in}) = \sum_{k=1}^N v_k \sigma \left(\sum_{j=1}^n w_{jk} x_{ij} + b_k \right) + b_0,$$

with approximation errors $\epsilon_i = y_i - f_i$ among the given response y_i and the corresponding simulated f_i , arbitrarily low.

Approximation with Neural Networks

$$y_{i}$$

$$y_{i} \cong f_{i}(x_{i1}, x_{i2}, \dots, x_{in}) = \sum_{k=1}^{N} v_{k}\sigma \left(\sum_{j=1}^{n} w_{jk}x_{ij} + b_{k}\right) + b_{0},$$

$$U(w_{jk}, b_{k}, v_{k}) = \sum_{i=1:m} (f_{i} - y_{i})^{2}$$

$$Loss Function$$
Depending on the data x_{ij} and the weights w, v, b
For simplicity, we use the symbol $w, \forall w \coloneqq \{w_{jk}, b_{k}, v_{k}\}$

$$unknown$$

Gradient Descent

 v_k

 x_{i1}

• •

 σ

$$\forall epoch n, do:$$

$$w_{n+1} = w_n - \gamma \frac{\partial L}{\partial w}$$
This is performed by Machine Learning Frameworks, such as **Tensorflow, PyTorch, etc.**
Depends on the weights AND the data points x_{ij}

Stochastic Gradient Descent

- At each iteration, pick a random data-point i > i
- Differentiate the Loss Function for this data-point
- Update the weights for the entire network

∀epoch *n*, do:

A

point *i*, do:

$$w_{n+1,i} = w_{n,i} - \gamma \frac{\partial L_i}{\partial w}$$

i	<i>x</i> _{<i>i</i>,1}	<i>x</i> _{<i>i</i>,2}	•••	<i>x</i> _{<i>i</i>,<i>N</i>}	y _i
1					
2					
m					

- ✓ In mini-batch Stochastic Gradient Descent, *i* as the current "batch" of data, that is to say subset of indices $\in \{1, 2, ..., m\}$.
- ✓ Parallelization is being performed there, by updating the weights for all batches in parallel.

Newton's Method

Godfrey Kneller http://www.phys.uu.nl/~vgent/astrology/ima ges/newton1689.jpg] Portrait of Isaac Newton (1642-1727) Ralf Pfeifer - de:Image:NewtonIteration Ani.gif CC BY-SA 3.0

 $\mathbf{x}_{n+1} = \mathbf{x}_n - [\mathbf{H}f(\mathbf{x}_n)]^{-1}
abla f(\mathbf{x}_n)$

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma
abla F(\mathbf{a}_n)$$

Methode generale pour la resolution des systemes d'equations simultanees Augustin-Louis Cauchy 1847

Newton's Method and Gradient Descent

figures (left to right): Joris Gillis - Created with Maple 10 Public Domain Public domain - Library of Congress Prints and Photographs Division.

- 1. Exploring the Data-Set
 - Distributions
 - Multiple Correlations
- 3. Error Analysis
 - Analysis of Residuals
 - Outliers
- 4. Sensitivity Analysis
- 5. Interpretation

2. Predictive Modelling

More of an Art than a Science

A big variety of

- Methods
- Algorithms
- Theories

Hutson, M., 2018. Al researchers allege that machine learning is alchemy. *Science*, *360*(6388), p.861.

Ananthaswamy, A., 2019. From counting with stones to artificial intelligence: the story of calculus. *Nature*, *568*(7750), pp.32-33.

Al Algorithms

- Theoretical Aspects
- Parallelism in Al
- Applications

Introduction to Data Analysis with AI Algorithms

Parallel Stochastic Gradient Descent

- For each rank
 - Pick a random data-point
 - Compute the gradient and update the weights

on *i*th GPU
$$\longleftarrow w_{n+1,i} = w_{n,i} - \gamma \frac{\partial L_i}{\partial w}$$

on *j*th GPU $\longleftarrow w_{n+1,j} = w_{n,j} - \gamma \frac{\partial L_j}{\partial w}$

Mix the weights

- e.g. average, ensembles, vector summation, etc.
- accuracy loss

we need a framework
(MPI, Horovod), to do
this operation in parallel
$$w_{n+1} = \frac{1}{h} \sum_{k=1:h} w_{n+1,k}$$

where h is the number of GPUs!

- ✓ Larger batch size is faster
- ✓ Smaller batch size more accurate
- ✓ Batch must fit into memory
- ✓ More nodes if GPU cannot handle size

Cassava Leaf Disease Classification

- Scope: To distinguish between several diseases that cause material harm to the food supply of many African countries, such as Uganda, Kabul, etc. In some cases the main remedy is to burn the infected plants to prevent further spread, which can make a rapid automated turnaround quite useful to the farmers.
- **Process**: Feed a picture with a cassava plant using a photo from a relatively inexpensive camera (e.g. from mobile phone) and get the type of disease, or healthy.

"4":"Healthy"

"0":"Bacterial Blight (CBB)"

CLASSES
3 13158
4 2577 → Healthy
2 2386
1 2189
0 1087

"1":"Brown Streak Disease (CBSD)"

Cassava Leaf Disease Classification

<image>

600

800

►Each Pixel:

3 Colors (RGB) 3 Float Numbers (0.0 – 1.0) Tot. 21397 images

- 800*600*3 = 1.44x10⁶ features
- 5.76 MB each, in float precision
- + Augmentation on-the-fly

Pretrained Networks

- Started with ResNet50
- Finally, calculations with EfficientNet
- Pretrained open source
- Pytorch + Horovod to parallelize

19M parameters to optimize

https://arxiv.org/pdf/1905.11946.pdf https://www.kaggle.com/khyeh0719/pytorch-efficientnet-baseline-inference-tta

Speed-Up on Cyclone: 1 – 64 GPUs

#	train minutes	Speed-	% valid.	Accuracy
GPUs	(10 epochs)	Up	Accuracy	Loss
1	44.82	1.00	89.00	0.00%
2	24.07	1.86	89.14	0.16%
4	14.18	3.16	89.11	0.12%
8	7.76	5.78	88.90	-0.11%
16	4.42	10.14	88.46	-0.61%
32	2.72	16.46	88.69	-0.35%
64	1.56	28.77	86.40	-2.92%

• image size: 512x512

• train batch size: 52 (per GPU)

- learning rate: 1e-4
- weight decay:1e-6

https://www.meetup.com/PyData-Cyprus/events/276154247/ PyTorch + Horovod

<u>intnet-k</u>	[0.10 [-0.11 grad_fn= 0%	[-0.1170, 0.2384, -0.0481]]], device='cuda:0', grad_fn= <selectbackward>) 0% 0/8559 [00:00<?, ?it/s]</th></selectbackward>									
				IPython console History							
		☆ LSP Python: ready	👌 Kite: initializing		Line 472, Col 5	UTF-8	LF	RW	Mem 59%		

Local Machine NVIDIA GeForce GTX 1650 4GB RAM

Cyclone 8 GPU nodes 4 NVIDIA Tesla V100-SXM2 32GB each

Cyclone 16 GPU nodes 4 NVIDIA Tesla V100-SXM2 32GB each

Real-Time Experiments

- Theoretical Aspects
- Parallelism in Al
- Applications

Introduction to Data Analysis with Al Algorithms

Methods

- Predictive Modelling
- Unsupervised Learning
- Optimization

- Data Types
 - Structured Data
 - Text Analysis
 - Computer Vision

Introduction to Data Analysis with AI Algorithms

- Biomass
- Urea
- Cement Kiln Dust
- Rice Husk Ash
- Sand
- Water

Cement Industry Wastes

- Ingredients vs Compressive strength
- Simulate behaviour
- Identification of An Optimal Recipe

EcoCement

A Novel Composite Material for the Construction Industry

- Town / Quarter
- Enclosed extent
- Covered extent
- Uncovered extent
- Built years
- Parcel Extent
- Share Percent
- Density
- Coverage
- Condition code
- View code
- Class code
- Shape Code
- Road Code

Beautiful home in the fast growing ... This well maintained home consists of 3 bedrooms, 2 bathrooms, full walk in shower and ... Laminate and carpet throughout home...

Predicted Price (€)

	Coefficient	p-Value				
WONDERFUL [^] 2	0.2077	3.6680e-17				
log(BEAUTIFUL)	0.0400	1.7865e-05				
log(m2)	1.0006	6.3105e-144				

text mining in advertisements

Real Estate

- Prediction of tooth loss (periodontitis)
- Accuracy Importance
 - Expensive Treatment
 - Decision for therapy or extraction
- Factors:
 - age
 - smoking
 - diabetes
 - oral hygiene, etc

- Logistic Regression 43%
- Deep Learning 87%

Dentistry

Vary for each beam

- span L
- width b
- effective depth *d*
- modulus of Elasticity E
- reinforcement ratio

Predict the Ultimate load Capacity

- **Simulate** Finite Element Modelling
- Develop new Formula for Building Codes
- Predict out of sample Experimental Data

Finite Element Modelling

- Database of Parametric Structures
- Analyze with Grasshoper3D & Karamba3D
- Questionnaires to Vote for Aesthetic Value
- Identify Links with Structural Response

Architecture

- Timeseries Forecasting
- Auto-Regressive Models
- Convert to Multivariate
- Transformer Networks

Noise

Timeseries

- Transactions Data
- User Item Matrix
- Modell users' preferences
- Suggest new movies, products, etc

Recommender Systems

- Optimization of Structural Response
- Varying the dimensions of columns & beams
- Enhancement of Earthquake Response
- Cost reduction

Engineering

- Co-Occurrences of Keywords
- Convert to a Map:
 - Distances reflect the Dissimilarities
 - Unsupervised Learning

NO

1. c_{ij} : = *contingency table* (co-occurrence of objects)

2. s_{ij} := similarity

3. $ds_{ij} := \frac{1}{s_{ij}}$ (dis-similarity)

4. $d_{ij} = ||x_i - x_j||$ (distance on map)

5. $f_{ij} := |ds_{ij} - d_{ij}|$ (objective function)

6. Optimality criteria satisfied?

Ӆ YES

7. End => drawing of the bibliometric map

Computational Analysis of Scientific Literature

Image Processing

0	0	0	0	0	0	0	0	D	٥	0	0	0	0	0	0	0
1	l	١	١	١	1	1	(/	1	١	1	1	١	/	1	1
2	ລ	2	2	ð	J	2	2	ደ	2	2	2	2	2	2	ス	2
З	3	3	3	3	3	3	3	3	3	3	З	3	3	3	З	3
4	4	٤	Y	4	4	Ч	4	4	4	4	4	9	ч	¥	4	4
5	5	5	5	5	\$	5	Б	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	Ь	6	ķ	6	6	6	6	b	6
¥	7	7	٦	7	7	ч	7	2	7	7	7	7	7	7	7	7
8	T	8	8	8	8	8	8	8	8	8	8	8	8	8	В	8
9	૧	9	9	9	ዋ	٦	9	٩	η	٩	9	9	9	9	9	9

A few samples from the MNIST test dataset. 14 December 2017 Josef Steppan

Handwritten Digits Recognition

- YOLOv5¹ model
- trained on COCO² dataset
 - 330K images
 - 1.5 million object instances
 - 80 object categories
- Detect Bounding Box

¹https://github.com/ultralytics/yolov5 ²https://cocodataset.org/

Object Recognition

Original image: Schreibtisch-mit-

Objekten.jpg, MTheiler

Object Recognition

Introduction to Data Analysis with AI Algorithms

Dr. Nikolaos Bakas