
DOCTYPE html>

Introduction to OpenMP

HPC Beginner Training event

17.02.2021

Jacob Finkenrath

NCC 4 HPC

CaSToRC, The Cyprus Insitute

1 / 85

Agenda

10:00 - 11:30: Brief introduction to Parallel Computing with OpenMP - Session 1

OpenMP Introduction (45 min + Hands On)
OpenMP Data sharing (45 min + Hands On)

11:30 - 11:45: Break

11:45 - 12:30: Brief introduction to Parallel Computing with OpenMP - Session 2

OpenMP Work sharing (45 min + Hands On)

12:30 - 13:30: Lunch Break

13:30 - 15:00: Brief introduction to Parallel Computing with OpenMP - Session 3

OpenMP Tasking
OpenMP Vectorization

2 / 85

Sources for this Course:

Slides and files can be found under

Courses are based on

Assi. Prof. Giannis Koutsou, Lecture CoS501/SD402, Introduction to High Performance
Computing, 09/2019 - 02/2020
POP CoE, Learning Material: https://pop-coe.eu/further-information/learning-material
Christian Terboven, Dirk Schmidl, RWTH Aaachen
PRACE Training https://materials.prace-ri.eu/view/divisions/openmp.html Byckling, Mikko
and Ilvonen, Sami (2014) PATC Course: Introduction to Parallel Programming @ CSC (2014).
Introduction to Parallel Programming @ CSC, 2014-09-23.
https://info.ornl.gov/sites/publications/files/Pub69214.pdf

Note that POP COE and PRACE Training are providing a lot of interesting material on
training/optimization/tools for HPC

most of Academic European Training Events on HPC are announced:
https://training.prace-ri.eu/index.php/training-events/

Tutorials and tools for Profiling and optimizing your applications:
https://pop-coe.eu/

Today, we will just go through the basics of OpenMP but we will discuss this in more details at
our next Workshop and for further question contact me.

[front01 ~] cd /nvme/scratch/jfinkenrath/NCC_Training
[front01 NCC_Training] ls
ex01 ex02 ex03 ex04 ex05 ex06 ex07 ex_fibo ex_trapez slides

3 / 85

https://pop-coe.eu/further-information/learning-material
https://materials.prace-ri.eu/view/divisions/openmp.html
https://info.ornl.gov/sites/publications/files/Pub69214.pdf
https://training.prace-ri.eu/index.php/training-events/
https://pop-coe.eu/

Reminder on Parallel Strategies

Here we will talk about:

Multi-threaded shared memory parallelization
Use multiple threads that share a common memory address space

Src: https://docs.nersc.gov/development/programming-models/openmp/openmp-resources/

To scale out of one node, parallelization has to be based on non-shared memory scheme

need to exchange messages between processes
MPI will be part of the next, Intermediate training event, which we will host in April

Here, we will discuss parallelization based on OpenMP to use the potential of available cores on a
single node

4 / 85

https://docs.nersc.gov/development/programming-models/openmp/openmp-resources/

Reminder - Cyclone Enviroment

Compute Nodes

17 CPU compute nodes
equiped with Intel(R) Xeon(R) Gold 6248 CPU, 40 cores

16 GPU compute nodes

equiped each with 4 Nvidia Volta GPU

see for more info's

default

check out module avail for more

[cn01 ~] less /proc/cpuinfo

[front01 ~]$ which gcc
/usr/bin/gcc
[front01 ~]$ gcc --version
gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
Copyright (C) 2015 Free Software Foundation, Inc.
[front01 ~]$ gfortran --version
GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
Copyright (C) 2015 Free Software Foundation, Inc.

5 / 85

Reminder - Preparation

vim editor

Open file

Use Insert to switch between "Insert"- and "Replace"-mode

To exit and write open command-line via: Ctr + c

save and exit via :wq and Enter

exit without save via

:q and Enter

write content to file "New.txt" via

:w New.txt and Enter

slurm basics

submit job via script submit_script.sh:
[front01 ~] sbatch submit_script.sh

check job status:
[front01 ~] squeue -u $USER

cancel job:
[front01 ~] scancel "JOB ID"

[front01 ~] vim example.txt

6 / 85

Motivation - Why OpenMP ?

OpenMP parallelized program can be run on your many- core workstation or on a node of a
cluster

Enables to parallelize one part of the program without re-building your software

Get some speedup with a limited investment in time
Efficient and well scaling code still requires effort

Serial and OpenMP versions can easily co-exist

Hybrid programming: OpenMP parallelization on top of MPI-tasks

e.g. can enable to optimize the on-node performance

OpenMP

Multi-threaded shared memory parallelization
Use multiple threads that share a common memory address space

Fortran 77/9X/03 and C/C++ are supported

Pragma-based, i.e. uses directives rather than functions (mostly)

Also an API, i.e. some simple functionality through function calls

7 / 85

Three components of OpenMP

Compiler directives, i.e., language extensions for shared memory parallelization

Syntax: directive, construct, clauses

C/C++: #pragma omp parallel shared(data)

Fortran: !$omp parallel shared(data)

Runtime library routines (Intel: libiomp5, GNU: libgomp)

Conditional compilation to build serial version

Environment variables

Specify the number of threads, thread affinity,
like OMP_NUM_THREADS, other are important in Hybrid parallelization approaches
see for more
https://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/ruomprun.html

8 / 85

https://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.5/com.ibm.xlcpp1315.lelinux.doc/compiler_ref/ruomprun.html

Starts with a single thread

Define parallel regions

More than one parallel regions can be
defined

So-called fork-join concept

OpenMP introduction

int
main()
{
 ...
 work to do outside parallel region
 ...
 #pragma omp parallel
 {
 ...
 work to do in parallel
 ...
 }
 ...
 more work outside parallel region
 ...
 return 0;
}

9 / 85

Parallel regions:

No jumping in or out (e.g. goto)
No branching in or out (e.g. inside if-
else block)
A thread can terminate the program
from within a block

OpenMP OpenMP runtime takes care of

thread management, forking, joining,
etc.
Specify number of threads via
environment variable OMP_NUM_THREADS

OpenMP introduction

int
main()
{
 ...
 work to do outside parallel region
 ...
 #pragma omp parallel
 {
 ...
 work to do in parallel
 ...
 }
 ...
 more work outside parallel region
 ...
 return 0;
}

10 / 85

Parallel regions:

No jumping in or out (e.g. goto)
No branching in or out (e.g. inside if-
else block)
A thread can terminate the program
from within a block

OpenMP OpenMP runtime takes care of

thread management, forking, joining,
etc.
Specify number of threads via
environment variable OMP_NUM_THREADS

OpenMP introduction

parallel region

use: omp_get_thread_num() and
omp_get_num_threads()

int
main()
{
 ...
 work to do outside parallel region
 ...
 #pragma omp parallel
 {
 ...
 work to do in parallel
 ...
 }
 ...
 more work outside parallel region
 ...
 return 0;
}

#include <omp.h>
...
/* Return a unique thread if for each thre
int tid = omp_get_thread_num();
...
/* Return the total number of threads */
int nth = omp_get_num_threads();

11 / 85

Using GNU compile via:

Note that, depending on the compiler, the #pragma may not cause an error if you
accidentally omit -fopenmp . You will just produce a scalar code.

On your local resources via:

or

On Cylcone use submit-scripts via slurm

OpenMP introduction

Compiling and running

[front01 ~]$ cc -fopenmp program.c -o program

[PC ~]$ export OMP_NUM_THREADS=10
[PC ~]$./program

[PC ~]$ OMP_NUM_THREADS=10 ./program

[front01 ~] more submit_script.sh
#!/bin/bash
#SBATCH --nodes=1 # 1 node
#SBATCH --ntasks-per-node=10 # Number of tasks to be invoked on each node
#SBATCH --time=00:02:00 # Run time in hh:mm:ss
OMP_NUM_THREADS=10 ./a

12 / 85

OpenMP introduction

Example: every thread says hi

Make a directory for this session:

Copy first example (/nvme/scratch/jfinkenrath/NCC_Training/ex01):

Edit the submit file submit_ex01.sh

Inspect file a.c , compile it, and run:

[front01 ~]$ mkdir tomp
[front01 ~]$ cd tomp

[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex01 .
[front01 tomp]$ cd tomp

 [front01 tomp]$ vi submit_ex01.sh
 ..

[front01 ex01]$ more a.c
...
[front01 ex01]$ cc -o a a.c
[front01 ex01]$ sbatch submit_ex01.sh
[front01 ex01]$ less ex01.out

13 / 85

Now, let's add a parallel region around the print statement:

Add the parallel region:

OpenMP introduction

Example: every thread says hi

 #include <stdio.h>
 int
 main()
 {
 #pragma omp parallel
 {
 printf("Hi\n");
 }
 return 0;
 }

14 / 85

Now, let's add a parallel region around the print statement:

Add the parallel region:

Compile, adding the -fopenmp option, then run:

you should see 10 Hi s

OpenMP introduction

Example: every thread says hi

 #include <stdio.h>
 int
 main()
 {
 #pragma omp parallel
 {
 printf("Hi\n");
 }
 return 0;
 }

[front01 ex01]$ cc -fopenmp -o a a.c
[front01 ex01]$ sbatch submit_ex01.sh
[front01 ex01]$ more ex01.out

15 / 85

OpenMP introduction

Example: every thread says hi

The default number of threads depends on the requested tasks, here

here (nodes * ntasks-per-node) = 10 but we can control this with OMP_NUM_THREADS :

Set OMP_NUM_THREADS before running. No need to compile again. Edit the submit-script:

You can also set OMP_NUM_THREADS to something larger than 10. You will simply be over-subscribing
the cores, i.e. more than one thread will run per core. Edit the submit script to

#SBATCH --nodes=1 # 1 nodes
#SBATCH --ntasks-per-node=10 # Number of tasks to be invoked on each node

for ((n=1;n<11;n++)) do
 # printout number of Threads
 echo Number of OMP Threads = $n

 # run program a with OMP_NUM_THREADS
 OMP_NUM_THREADS=$n ./a
done

for ((n=10;n<81;n+=10)) do
 # printout number of Threads
 echo Number of OMP Threads = $n

 # run program a with OMP_NUM_THREADS
 OMP_NUM_THREADS=$n ./a
done

16 / 85

Now let's see how to use the OpenMP API. Additional to that every thread is printing Hi ,
to also write its thread id and the total number of threads. For that

Add the following:
1. Include <omp.h> in the beginning of the source code
2. Get the thread id with omp_get_thread_num()
3. Get the number of threads with omp_get_num_threads()

OpenMP introduction

Example: every thread says hi

17 / 85

Compile, edit the submit file and submit as usual. You should see something like:

Note that the order by which each thread reaches the printf() statement is non-
deterministic

Indeed, you should make no assumptions on the order by which each thread runs

OpenMP introduction

Example: every thread says hi

#include <stdio.h>
#include <omp.h>
int
main()
{
#pragma omp parallel
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("Hi, I am thread: %2d of %2d\n", tid, nth);
 }
 return 0;
}

[front01 ex01]$ less ex01.out
Hi, I am thread: 0 of 5
Hi, I am thread: 3 of 5
Hi, I am thread: 4 of 5
Hi, I am thread: 1 of 5
Hi, I am thread: 2 of 5

18 / 85

OpenMP - Overview

Introduction

Use exercise, see /nvme/scratch/jfinkenrath/NCC_Training/ex01
Compiling with -fopenmp or -qopenmp
Running using OMP_NUM_THREADS=10 ./a
Using <omp.h> to use OpenMP functions omp_get_thread_num() and omp_get_num_threads()

Data sharing

how to interact with data in parallel region ?
how the different threads are interacting ?

19 / 85

OpenMP Data Sharing

Data Sharing between Threads

can be set by the causes:

private(list)private(list)

Private variables are stored in the private stack of each thread
Undefined initial value
Undefined value after parallel region

shared(list)shared(list)

All threads can write to, and read from a shared variable
Variables are shared by default

default(private/shared/none)default(private/shared/none)

Sets default for variables to be shared, private or not defined
In C/C++ default(private) is not allowed
default(none) can be useful for debugging as each variable has to be defined manually

20 / 85

Each thread will have a local copy of a . a can be modified by
each thread independently
The variable b is shared between threads. Each thread can
modify it and all threads will see the same data
You can also set a default attribute for data sharing

All variables are shared, except b which is private

OpenMP Data Sharing

Data sharing attributes

int a = 1;
int b = 2;
#pragma omp parallel private(a) shared(b)
{
 ...
}

int a = 1, b = 2, c = 3, d = 4, e = 5;
pragma omp parallel default(shared) private(b)
{
 ...
}

21 / 85

OpenMP Data Sharing

Data sharing example

Copy ex02 as before:

Inspect, compile, and run a.c :

all threads have some_var set to the value 42

[front01 ex01]$ cd ../
[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex02 .
[front01 tomp]$ cd ex02

[front01 ex02]$ cc -fopenmp -o a a.c
[front01 ex02]$ more submit_ex02.sh
..
OMP_NUM_THREADS=5 ./a
[front01 ex02]$ sbatch submit_ex02.sh
..
..
[front01 ex02]$ more ex02.out
Thread: 2 of 5, some_var = 42
Thread: 4 of 5, some_var = 42
Thread: 0 of 5, some_var = 42
Thread: 1 of 5, some_var = 42
Thread: 3 of 5, some_var = 42

22 / 85

Now change the code so that the variable is modified within the parallel block, for
example:

OpenMP Data Sharing

Data sharing example

#include <stdio.h>
#include <omp.h>
int
main()
{
 int some_var = 42;
 #pragma omp parallel
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

23 / 85

Now change the code so that the variable is modified within the parallel block, for
example:

The output is non-deterministic, for example:

OpenMP Data Sharing

Data sharing example

#include <stdio.h>
#include <omp.h>
int
main()
{
 int some_var = 42;
 #pragma omp parallel
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

[cn01 ex02]$ more ex02.out
Thread: 3 of 5, some_var = 3
Thread: 4 of 5, some_var = 4
Thread: 2 of 5, some_var = 4
Thread: 1 of 5, some_var = 1
Thread: 0 of 5, some_var = 3

24 / 85

Set the variable to private, to avoid this race condition

What is the value of some_var after the parallel region ends?

OpenMP Data Sharing

Data sharing example

#include <stdio.h>
#include <omp.h>
int
main()
{
 int some_var = 42;
 #pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

[front01 ex02]$ sbatch submit_ex02.sh
...
[front01 ex02]$ more ex02.out
Thread: 0 of 5, some_var = 0
Thread: 4 of 5, some_var = 4
Thread: 2 of 5, some_var = 2
Thread: 3 of 5, some_var = 3
Thread: 1 of 5, some_var = 1

25 / 85

Initial value of a private variable

What do you expect this code to produce?
Now try with firstprivate(some_var)

OpenMP Data Sharing

Data sharing example

#include <stdio.h>
#include <omp.h>
int
main()
{
 int some_var = 42;
 #pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = some_var+tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

26 / 85

Shared vs private array (add -std=c99 to your compiler flag)

What do you expect the output of this program to be?

OpenMP Data Sharing

Data sharing example

#include <stdio.h>
#include <omp.h>
int
main()
{

 int arr[12] = {0,0,0,0,0,0,0,0,0,0,0,0};

 #pragma omp parallel shared(arr)
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 arr[tid] = tid;
 printf("Thread: %2d of %2d, some_var = %d\n", tid, arr[tid]);
 }

 for(int i=0; i<12; i++) {
 printf("arr[%d] = %d\n", i, arr[i]);
 }

 return 0;
}

27 / 85

OpenMP Summary

Data Sharing

variables within parallel region can be shared or private

private: Undefined before and after the region

shared : all threads can write and read from it

firstprivate:

Work Sharing

Let's take a look how we can parallelize the computation using OpenMP

Parallelization

how to parallize for-loops ?

First we will discuss the Loop construct of OpenMP

In the afternoon session we will discuss Tasking

28 / 85

OpenMP Work Sharing

Parallel region creates an Single Program Multiple DataSingle Program Multiple Data instance where each thread executes
the same code

we can one split the work between the threads of a parallel region?

Loop construct
Task construct

29 / 85

Directive instructing compiler to share the work of a loop

C/C++: #pragma omp for [clauses]

Fortran: !$omp do [clauses]

The construct must followed by a loop construct. To
be active it must be inside a parallel region

Combined construct with parallel:

in C/C++:

in Fortran

Loop index is private by default

Work sharing dynamics can be controlled with the schedule -
clause

For-loops

in C/C++

in Fortran

OpenMP Work Sharing

#pragma omp parallel for

$omp parallel do

 #pragma omp parallel for
 for(int i=0; i<n; i++){
 ...
 }

!$OMP PARALLEL DO
do i = 1, n
 ...
end do
!$OMP END PARALLEL DO

30 / 85

the n iterations will be split over the available threads accordingly

Static scheduling, e.g.:

a chunk is 10 iterations. Threads receive a chunk to work in order.
Dynamic scheduling, e.g.:

a chunk is 10 iterations. Threads receive a chunk to work until they are exhausted.
Guided scheduling, e.g.:

chunk size is modified as iterations are consumed.

OpenMP Work Sharing

Loop construct

#pragma omp parallel for
 for(int i=0; i<n; i++){
 ...
}

#pragma omp parallel for schedule(static, 10)

#pragma omp parallel for schedule(dynamic, 10)

#pragma omp parallel for schedule(guided)

31 / 85

For loops

use within a parallel region, i.e. when a parallel region is already open.

Race condition:

takes place when multiple threads read and write a variable simulatneously
random results depedning on the order of threads accessing sum_variable

OpenMP Work Sharing

Loop construct

#pragma omp parallel
{
 #pragma omp for
 for(int i=0; i<n; i++){
 ...
 }
}

int sum_variable = 0;
#pragma omp parallel for
for(int i=0; i<n; i++){
 sum_variable += ...;
 ...
}

32 / 85

Summing elements of array is an example of reduction operation

OpenMP provides support for common reductions within parallel regions and loops
with the reduction -clause

OpenMP Work Sharing

Reductions

! = = +∑
"= 1

#
$" %1 %2

33 / 85

Summing elements of array is an example of reduction operation

OpenMP provides support for common reductions within parallel regions and loops
with the reduction -clause

reduction(operator:list)

Performs reduction on the (scalar) variables in list
Private reduction variable is created for each thread’s partial result
Private reduction variable is initialized to operator’s initial value
After parallel region the reduction operation is applied to private variables and
result is aggregated to the shared variable

OpenMP Work Sharing

Reductions

! = = +∑
"= 1

#
$" %1 %2

34 / 85

Different reductions operators available like:

Operator Initial value
+ 0
- 1
* 0

OpenMP Work Sharing

Reductions within for loop:

int sum_variable = 0;

#pragma omp parallel for reduction(+: sum_variable)
for(int i=0; i<n; i++){
 sum_variable += ...;
 ...
}

35 / 85

Operation:

Copy ex03 as before:

Inspect, compile axpy.c, edit the submit script and run :

Use an OpenMP pragma to parallelize the second occurrence of the main for loop

OpenMP Work Sharing

Linear algebra

[front01 ex02]$ cd ../
[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex03 .
[front01 tomp]$ cd ex03

[front01 ex03]$ cc -std=c99 -fopenmp -o axpy axpy.c
[front01 ex03]$ vi submit_ex03.sh
...
[front01 ex03]$ sbatch submit_ex03.sh
[front01 ex03]$ more ex03.out
t0 = 0.232100 sec, t1 = 0.232260 sec, diff z norm = 0.000000e+00

= & +'()(*(

36 / 85

Operation:

Change:

It's also useful to report the total number of threads:

OpenMP Work Sharing

Linear algebra

for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
}

#pragma omp parallel for
for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
}

printf(" t0 = %lf sec, t1 = %lf sec, diff z)

#pragma omp parallel
{
 int nth = omp_get_num_threads();
 #pragma omp single
 printf(" nth = %2d, t0 = %lf sec, t1 = %lf)
}

= & +'()(*(

37 / 85

Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1,...,10. How does the runtime scale?

OpenMP Work Sharing

= & +'()(*(

38 / 85

Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1,...,10. How does the runtime scale?

OpenMP Work Sharing

 [front01 ex03]$ vi submit_ex03.sh
 ...

 for n in 1 2 3 4 5 6 7 8 9 10
 do
 OMP_NUM_THREADS=$n ./axpy $((32*1024*1024))
 done
 ...
 [front01 ex03]$ sbatch submit_ex03.sh

= & +'()(*(

39 / 85

Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1,...,10. How does the runtime scale?

OpenMP Work Sharing

 [front01 ex03]$ vi submit_ex03.sh
 ...

 for n in 1 2 3 4 5 6 7 8 9 10
 do
 OMP_NUM_THREADS=$n ./axpy $((32*1024*1024))
 done
 ...
 [front01 ex03]$ sbatch submit_ex03.sh

 [front01 ex03]$ more ex03.out
 nth = 1, t0 = 0.233991 sec, t1 = 0.261533 sec,
 nth = 2, t0 = 0.232231 sec, t1 = 0.131076 sec,
 nth = 3, t0 = 0.235093 sec, t1 = 0.088683 sec,
 ...
 nth = 8, t0 = 0.234414 sec, t1 = 0.053443 sec,
 nth = 9, t0 = 0.230891 sec, t1 = 0.048860 sec,
 nth = 10, t0 = 0.233603 sec, t1 = 0.051261 sec,

= & +'()(*(

40 / 85

Linear algebra

Dot product operation:

Copy ex04 as before:

Inspect, compile, and run xdoty.c :

Use an OpenMP pragma to parallelize the second occurrence of the main for loop

OpenMP Work Sharing

[front01 ex03]$ cd ../
[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex04 .
[front01 tomp]$ cd ex04

[front01 ex04]$ cc -std=c99 -o xdoty xdoty.c
[front01 ex04]$ vi submit_ex04.sh
...
./xdoty $((32*1024*1024))
...
[front01 ex04]$ sbatch submit_ex04.sh
[front01 ex04]$ more ex04.out
t0 = 0.172530 sec, t1 = 0.171624 sec, norms = 8.387960e+06, 8.387960e+06

+ = * =), ∑
(= 0

-−1
)(*(

41 / 85

Linear algebra

Dot product operation:

OpenMP Work Sharing

double norm_1 = 0;

for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

+ = * =), ∑
(= 0

-−1
)(*(

42 / 85

Linear algebra

Dot product operation:

OpenMP Work Sharing

double norm_1 = 0;

for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

double norm_1 = 0;

#pragma omp parallel for reduction(+:norm_1)
for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

+ = * =), ∑
(= 0

-−1
)(*(

43 / 85

Dot product operation:

OpenMP Work Sharing

Linear algebra

Now run for OMP_NUM_THREADS from 1,...,10.
edit submit_ex04.sh

double norm_1 = 0;

for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

double norm_1 = 0;

#pragma omp parallel for reduction(+:norm_1)
for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

for n in 1 2 3 4 5 6 7 8 9 10; do
 OMP_NUM_THREADS=$n ./xdoty $((32*1024*1024))
done

[front01 ex04]$ more ex04.out
nth = 1, t0 = 0.171664 sec, t1 = 0.186125 sec, norms = 8.387960e+06, 8.387960e+06
nth = 2, t0 = 0.171736 sec, t1 = 0.093612 sec, norms = 8.387960e+06, 8.387960e+06
nth = 3, t0 = 0.170798 sec, t1 = 0.062440 sec, norms = 8.387960e+06, 8.387960e+06
...
nth = 10, t0 = 0.171464 sec, t1 = 0.024965 sec, norms = 8.387960e+06, 8.387960e+06

+ = * =), ∑
(= 0

-−1
)(*(

44 / 85

OpenMP Summary

For-loop construct

Parallel region given by the

Directive instructing compiler to share the work of a loop
using for C/C++: #pragma omp for [clauses]
with clauses:

schedule(static/dynamic,guided,chunk)
reduction(+/-/*: VARIABLE)

Tasking

If computations are not located in simple for-loops, parallelization via for-loop construct can become
tricky

OpenMP allows to identify tasks within parallel region
this simplifies to parallelize more complicated structures
but can increase overheads by OpenMP

45 / 85

OpenMP Tasking

The task directive

Critical regions: where each thread should run the region one-at-a-time

of course, critical regions are serialized, i.e. the runtime scales with the number of threads.

Single regions: within a parallel region, run by one thread

#pragma omp parallel
{
 #pragma omp critical
 {
 ... code to be run by each thread, one-at-a-time ...
 }
}

#pragma omp parallel
{
#pragma omp single
 {
 printf("Hi\n");
 }
}

46 / 85

OpenMP Tasking

The task directive

Tasks: define a block of code, a task to be run by a single thread:

Usually run within a single region, to distribute work

#pragma omp task
{
 ...
}

int a = 1;
int b = 2;
#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 {
 // This will be done by one thread
 a = a+1;
 }

 #pragma omp task
 {
 // This will be done by another thread
 b = b+1;
 }
 }
}

47 / 85

OpenMP Tasking

The task directive

Copy ex05 as before:

Inspect, compile, and run a.c :

[front01 ex04]$ cd ../
[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex05 .
[front01 tomp$ cd ex05

 [front01 ex05]$ cc -std=c99 -fopenmp -o a a.c
 [front01 ex05]$ vi submit_ex05.sh
 ...
 OMP_NUM_THREADS=5 ./a
 ...
 [front01 ex05]$ sbatch submit_ex05.sh
 [front01 ex05]$ more ex05.sh
 Hi, I am thread: 0 of 5
 Hi, I am thread: 1 of 5
 Hi, I am thread: 4 of 5
 Hi, I am thread: 3 of 5
 Hi, I am thread: 2 of 5

48 / 85

OpenMP Tasking

The task directive

Enclose the print statement in an omp single region:

Compile and run a few times.

Each time a single thread calls the printf() . Which thread this is, is random.

#pragma omp parallel
{
 #pragma omp single
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("Hi, I am thread: %2d of %2d\n", tid, nth);
 }
}

[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh
Hi, I am thread: 0 of 5
[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh
Hi, I am thread: 1 of 5
[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh
Hi, I am thread: 3 of 5
[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh

49 / 85

OpenMP Tasking

The task directive

Now try the following:

Compile and run a few times

#include <stdio.h>
#include <omp.h>

int
main()
{
 #pragma omp parallel
 {
 #pragma omp single
 {
 #pragma omp task
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("1: Hi, I am thread: %2d of %2d\n", tid, nth);
 }
 #pragma omp task
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("2: Hi, I am thread: %2d of %2d\n", tid, nth);
 }
 }
 }
 return 0;
}

50 / 85

OpenMP Tasking

The task directive, another example

Run a few times:

Explanation:

The thread within the omp single region encounters a task and dispatches it to idle threads to
run

Which thread picks up the task is random

Which task of the two is run first is also random

[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh
1: Hi, I am thread: 2 of 5
2: Hi, I am thread: 0 of 5
[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh
1: Hi, I am thread: 4 of 5
2: Hi, I am thread: 2 of 5
[front01 ex05]$ sbatch submit_ex05.sh
[front01 ex05]$ more ex05.sh
2: Hi, I am thread: 2 of 5
1: Hi, I am thread: 4 of 5

51 / 85

OpenMP Tasking

The task directive, another example

The taskwait directive can be used to ensure the order in which tasks are run:

This way, the first printf() is always run first

#include <stdio.h>
#include <omp.h>

int
main()
{
#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("1: Hi, I am thread: %2d of %2d\n", tid, nth);
 }
 #pragma omp taskwait
 #pragma omp task
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("2: Hi, I am thread: %2d of %2d\n", tid, nth);
 }
 }
}
return 0;
}

52 / 85

OpenMP Tasking

The task directive, another example

Consider the three words: one , two , and three
Write a program that, each time it is run, prints a random permutation of these three words

The regular procedure

Copy ex06 as before:

Inspect, compile, and submit:

Add task directives, so that the three words appear in a random permutation

[front01 ex05]$ cd ../
[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex06 .
[front01 tomp]$ cd ex06

[n001 ex06]$ vi submit_ex06.sh
...
./a
...
[n001 ex06]$ more ex06.out
one two three

53 / 85

Edit submit_ex06.sh to

and run a few times:

OpenMP Tasking

The task directive, yet another example

#include <stdio.h>
#include <omp.h>

int
main()
{
 #pragma omp parallel
 {
 #pragma omp single
 {
 #pragma omp task
 printf("one ");

 #pragma omp task
 printf("two ");

 #pragma omp task
 printf("three ");
 }
 }
 printf("\n");
 return 0;
}

[front01 ex06]$ vi submit_ex06.sh
...
OMP_NUM_THREADS=5 ./a
...

[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
three one two
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
one two three
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
two one three
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
one two three

54 / 85

OpenMP Tasking

The task directive, yet another example

Now add an additional task to print done! , but insure that its always as the last word

55 / 85

Compile and run for a few times:

OpenMP Tasking

The task directive, yet another example

Now add an additional task to print done! , but insure that its always as the last word

 #include <stdio.h>
#include <omp.h>
int
main()
{
 #pragma omp parallel
 {
 #pragma omp single
 {
 #pragma omp task
 printf("one ");

 #pragma omp task
 printf("two ");

 #pragma omp task
 printf("three ");

 #pragma omp taskwait

 #pragma omp task
 printf("done!");
 }
 }
 printf("\n");
 return 0;
}

[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
two three one done!
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
one two three done!
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
two one three done!
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
one two three done!
[front01 ex06]$ sbatch submit_ex06.sh
[front01 ex06]$ more ex06.out
one two three done!

56 / 85

OpenMP Tasking

The task directive, yet another example

Copy ex07 as before:

[front01 ex06]$ cd ../
[front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex07 .
[front01 tomp]$ cd ex07

57 / 85

OpenMP Tasking

The task directive, yet another example

Inspect a.c , in particular main()

Initializes an array a[N]

The first N-1 elements are set to a random integer, up to 8 digits long
The last element a[N-1] is set to -1

Sets a pointer p to the first element: *p = &a[0]

And then enters a loop:

Calls the function process() with argument the pointer p : process(p)
After process() returns, sets p to the next element in a[] : p=p+1
The loop terminates when the value in p is -1 , i.e. when it reaches the end of array a[]

Inspect function process()

Takes the value pointed to by *x (p in the main program)

Sums all integers from one up to the value of *x

Sets *x to be equal to the sum

58 / 85

main of ex07.c and function process()

OpenMP Tasking

The task directive, yet another example

int
main()
{
 srand(2147483641);
 int a[N];
 for(int i=0; i<N-1; i++)
 a[i] = irand();

 a[N-1] = -1;

 double t0 = stop_watch(0);
 int *p = &a[0];
 while(*p >= 0) {
 process(p);
 p = p+1;
 }
 t0 = stop_watch(t0);

 printf(" t = %lf\n", t0);
 return 0;
}

 void
 process(int *x)
 {
 int sum = 0;
 for(int i=0; i<*x; i++) {
 sum += i;
 }
 *x = sum;
 return;
 }

59 / 85

OpenMP Tasking

The task directive, yet another example

Currently, the program uses an array length of 10, and takes about 1.0 seconds to complete

Our goal is to use omp task directives so that the sums are distributed to different threads

Use omp parallel and omp single to define a parallel region and a scalar region within that
parallel region

Use omp task to specify which block is to be distributed to different threads. Be careful, you will
need to use a firstprivate directive somewhere

There are many ways in which this code could enter an infinite loop, including:

Corrupting the array. For example by writing, in process() to the wrong memory address,
thus corrupting the last element of a[] , causing the while() loop to loop forever

Not incrementing correctly (*p) . For example if the thread that increments p is not the
thread that checks the while() condition

60 / 85

OpenMP Tasking

The task directive, yet another example

int *p = &a[0];
#pragma omp parallel
{
 #pragma omp single
 while(*p >= 0) {
 #pragma omp task firstprivate(p)
 {
 process(p);
 }
 p = p+1;
 }
}

61 / 85

OpenMP Tasking

The task directive, yet another example

A single thread executes the while() loop

int *p = &a[0];
#pragma omp parallel
{
 #pragma omp single
 while(*p >= 0) {
 #pragma omp task firstprivate(p)
 {
 process(p);
 }
 p = p+1;
 }
}

62 / 85

OpenMP Tasking

The task directive, yet another example

A single thread executes the while() loop
A task is dispatched to call process() in each iteration. The pointer p is copied each time and is
private to each thread

int *p = &a[0];
#pragma omp parallel
{
 #pragma omp single
 while(*p >= 0) {
 #pragma omp task firstprivate(p)
 {
 process(p);
 }
 p = p+1;
 }
}

63 / 85

OpenMP Tasking

The task directive, yet another example

A single thread executes the while() loop
A task is dispatched to call process() in each iteration. The pointer p is copied each time and is
private to each thread
Only the thread in the single region increments p . Only this thread checks the while() statement
termination condition

int *p = &a[0];
#pragma omp parallel
{
 #pragma omp single
 while(*p >= 0) {
 #pragma omp task firstprivate(p)
 {
 process(p);
 }
 p = p+1;
 }
}

64 / 85

OpenMP Tasking

The task directive, yet another example

[front01 ex07]$ vi submit_ex07.sh
..
for n in 1 2 3 4 5 6 7 8 9 10 11 12; do OMP_NUM_THREADS=$n ./a ; done
..
[front01 ex07]$ sbatch submit_ex07.sh
[front01 ex07]$ more ex07.sh
nth: 1 t = 1.445933
nth: 2 t = 0.722370
nth: 3 t = 0.513235
nth: 4 t = 0.418930
nth: 5 t = 0.368200
nth: 6 t = 0.309495
nth: 7 t = 0.257213
nth: 8 t = 0.255306
nth: 9 t = 0.256733
nth: 10 t = 0.256414
nth: 11 t = 0.255445
nth: 12 t = 0.281543

int *p = &a[0];
#pragma omp parallel
{
 #pragma omp single
 while(*p >= 0) {
 #pragma omp task firstprivate(p)
 {
 process(p);
 }
 p = p+1;
 }
}

65 / 85

OpenMP Tasking

The task directive, reduction of overheads

Recursive approach to compute FibonacciRecursive approach to compute Fibonacci

On the following slides we will discuss three approaches to parallelize this recursive code with
Tasking.

int main(int argc,
char* argv[])
{
 [...]
 fib(input);
 [...]
}

int fib(int n)
{
 if (n < 2) return n;
 int x = fib(n - 1);
 int y = fib(n - 2);
 return x+y;
}

66 / 85

OpenMP Tasking

The task directive, reduction of overheads

First version parallelized with Tasking (omp-v1)First version parallelized with Tasking (omp-v1)

Only one Task / Thread enters fib() from main(), it is responsable for creating the two initial
work tasks

Taskwait is required, as otherwise x and y would be lost

int main(int argc,
char* argv[])
{
 [...]
 #pragma omp parallel
 {
 #pragma omp single
 {
 fib(input);
 }
 }
 [...]
}

int fib(int n)
{
 if (n < 2) return n;
 int x, y;
 #pragma omp task shared(x)
 {
 x = fib(n - 1);
 }
 #pragma omp task shared(y)
 {
 y = fib(n - 2);
 }
 #pragma omp taskwait
 return x+y;
}

67 / 85

OpenMP Tasking

The task directive, reduction of overheads

Scalability measurements (1/3)Scalability measurements (1/3)

Overhead of task creation prevents better scalability

68 / 85

OpenMP Tasking

The task directive, reduction of overheads ifif Clause Clause

If the expression of an if clause on a task evaluates to false

The encountering task is suspended

The new task is executed immediately

The parent task resumes when the new task finishes

Used for optimization, e.g., avoid creation of small tasks

69 / 85

OpenMP Tasking

The task directive, reduction of overheads

Second version parallelized with Tasking (omp-v2)Second version parallelized with Tasking (omp-v2)

Improvement: Don‘t create yet another task once a certain (small enough) n is reached

int main(int argc,
char* argv[])
{
 [...]
 #pragma omp parallel
 {
 #pragma omp single
 {
 fib(input);
 }
 }
 [...]
}

int fib(int n)
{
 if (n < 2) return n;
 int x, y;
 #pragma omp task shared(x) \
 if(n > 30)
 {
 x = fib(n - 1);
 }
 #pragma omp task shared(y) \
 if(n > 30)
 {
 y = fib(n - 2);
 }
 #pragma omp taskwait
 return x+y;
}

70 / 85

OpenMP Tasking

The task directive, reduction of overheads

Scalability measurements (2/3)Scalability measurements (2/3)

Speedup is ok, but we still have some overhead when running with 4 or 8 threads

71 / 85

OpenMP Tasking

The task directive, Third version parallelized with Tasking (omp-v3)

Improvement: Skip the OpenMP overhead once a certain n is reached (no issue w/ production
compilers)

int main(int argc,
char* argv[])
{
 [...]
 #pragma omp parallel
 {
 #pragma omp single
 {
 fib(input);
 }
 }
 [...]
}

int fib(int n)
{
 if (n < 2) return n;
 if (n <= 30)
 return serfib(n);
 int x, y;

 #pragma omp task shared(x)
 {
 x = fib(n - 1);
 }

 #pragma omp task shared(y)
 {
 y = fib(n - 2);
 }

 #pragma omp taskwait
 return x+y;
}

72 / 85

OpenMP Tasking

The task directive, reduction of overheads

Scalability measurements (3/3)Scalability measurements (3/3)

73 / 85

OpenMP Tasking

The task directive, reduction of overheads

Can you achieve better scaling ?

Check the dependence on the if clause

Can you come up with a faster version for calculating Fibonaci numbers ?

74 / 85

Vectorization in OpenMP

In OpenMP 4.0, SIMD directives were added to help compilers generate efficient vector code.

SIMD directives explicitly enable vectorization in the compiler
can support the autovectorization of the compiler

SIMD loop directives

can be placed above for loops with the syntax

which marks the loop as a SIMD enabled loop or SIMD region.
OpenMP loop directives only apply to for loops that are in a canonical form, where the number
of iteration is known

#pragma omp simd [clause[[,]clause] ...]

75 / 85

Vectorization in OpenMP

SAXPY example

Now, lets declare a simd region for the second loop

compile with -O1 and run

 ...
 #pragma omp simd
 for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
 }
 ...

 [front01 ex08]$ more ex03.out
 t0 = 0.099114 sec, t1 = 0.098404 sec, diff z norm = 0.000000e+00

76 / 85

Vectorization in OpenMP

SAXPY example

Now, lets declare a simd region for the second loop

compile with -O1 and run

compile with -O2 and check the change

what happens with -Ofast ? Be very careful with -Ofast, it can result in incorrect output for
programs that depend on an exact implementation of IEEE or ISO rules for math function

 ...
 #pragma omp simd
 for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
 }
 ...

 [front01 ex08]$ more ex03.out
 t0 = 0.099114 sec, t1 = 0.098404 sec, diff z norm = 0.000000e+00

77 / 85

Vectorization in OpenMP

SAXPY example

Lets try to parallelize it

Note that the default gnu compiler will not work, reload another version

Checkout OpenMP enviroment variables:
Set OMP_DYNAMIC=true and compare it with OMP_NUM_THREADS=$n

 ...
 #pragma omp parallel for simd
 for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
 }
 ...

 [front01 ex03]$ module load GCC/8.2.0-2.31.1
 [front01 ex03]$ cc -std=c99 -fopenmp -O2 -o axpy axpy.c

78 / 85

Vectorization in OpenMP

SAXPY example

Now does it work ?
Intel compiler can provide a report

in more complex code, the auto-vectorization of the compiler is likely to fail, for that OpenMP
provides causes which will help the compiler to identify vectorizable regions, like loop and
delvare directives (see next pages for an overview)

 [front01 ex08]$ module load icc
 [front01 ex08]$ icc -std=c99 -qopt-report=2 -qopenmp -O2 -o axpy axpy.c
 icc: remark #10397: optimization reports are generated in *.optrpt files in the output location
 [front01 ex08]$ more axpy.optrpt
 ...
 LOOP BEGIN at axpy.c(76,3)
 remark #15300: LOOP WAS VECTORIZED
 LOOP END
 ...
 LOOP BEGIN at axpy.c(83,3)
 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
 LOOP END
 ...

79 / 85

Vectorization in OpenMP

SIMD loop directives

SIMD aligned #pragma omp simd aligned([ptr] : [alignment], . . .)
data aligned speed up memory access and help the compiler to determine property of data
programmer has to ensure the data alignment

SIMD reduction #pragma omp simd reduction([operation] : [variable],. . .)
instructs the compiler to perform a vector reduction on a variable
some compilers have difficulties to detecting reductions automatically

SIMD safelen #pragma omp simd safelen([value])

for data dependency within the loop
assure that only data get accessed which are not exceeding the specified value

SIMD collapse #pragma omp simd collapse([value]

try collapse nested loops into one, suitable for auto-vectorization

SIMD private/lastprivate #pragma omp simd private([variable],...)

private and lastprivate clauses control data privatization and sharing of variables for a
SIMD Loop
private clause creates an uninitialized vector inside the SIMD loop for the given variable
lastprivate clause provides the same semantics but also copies out the values produced
from the last iteration to outside the loop

80 / 85

Vectorization in OpenMP

SIMD declare directives

SIMD enabled functions can be declared by

compiler will create several versions of SIMD declared functions

different vectorization used depend on from which region function is called
function has its own type of vectorized arguments, uniform, vector and linear

SIMD declare aligned #pragma omp declare simd aligned([argument] : [alignment],. . .)

aligned clause instructs the compiler that the pointers passed as function arguments are
aligned by the given alignment value

SIMD declare simdlen #pragma omp declare simd simdlen([value])

simdlen clause specifies the number of packed arguments the vectorized function will
execute

SIMD declare uniform #pragma omp declare simd uniform([argument],. . .)

indicates that the valuel not change and is shared between the SIMD lanes of the loop

SIMD declare linear #pragma omp declare simd linear([argument] : [linearstep],. . .)

linear clause will be increased by linear between each successive function call

#pragma omp declare simd [clause[[,] clause] ...]

81 / 85

Vectorization in OpenMP

SIMD declare directives

Lets take a look to our last exercise

The file is based on exercise 3, only that the function is outsourced. Compile it via:

and check the timings.

check if compiler optimization can speed up the problem
does something change if you compile the different files with different flags
does it help to the function axpy as declare simd

 [front01 ex07]$ cd ../
 [front01 tomp]$ cp -r /nvme/scratch/jfinkenrath/NCC_Training/ex08 .
 [front01 tomp$ cd ex08

 [front01 ex08]$ gcc -fopenmp -O0 -c fnt.c
 [front01 ex08]$ gcc -fopenmp -O0 -o axpy fnt.o axpy.c

82 / 85

SUMMARY

OpenMP Introduction

Compiler directives, i.e., language extensions for shared memory parallelization

- Syntax: *directive*, **construct**, `clauses`
- C/C++: *#pragma* **omp parallel** `shared(data)`

OpenMP API functions can give back informations on the thread ID with
omp_get_thread_num() and omp_get_num_threads()

OpenMP Data sharing

Private variables can be indicated as private(list)
Shared variables can be indicated as shared(list)

OpenMP Work sharing

for-loop construct
use #pragma omp parallel for to parallize a for-loop
use reduction clauses to avoid race-conditions like #pragma omp parallel for
reduction(sum_var:+)

tasking
task can be assigned to a single thread in a parallel region
simplies to paralellize code but still need care to avoid overheads

OpenMP Vectorization

openMP can indicate vectorizable regions for auto-vectorization of the compiler
regions with #pragma omp simd or for function #pragma omp declare simd

83 / 85

FINAL REMARKS

Programme of the NCC for HPC

Upcoming events in the first half of 2021

Industrial week: 1st March - 4th March

Intermediate Training Event: 19th - 21th April

which includes MPI, OpenMP and Hybrid Programming, Python for HPC, Optimization etc.

Hackathon: 19th - 21th May

we are looking for projects, call for application is not open

Academic and industrial call for High Level Support (will be announced soon)

- to leverage access to High Performance Computing
- includes High Level Support for projects

For news, please subscribe to mailing list https://castorc.cyi.ac.cy/national-hpc-competence-centre

For any question regarding the academic support, send me an email j.finkenrath@cyi.ac.cy

84 / 85

https://castorc.cyi.ac.cy/national-hpc-competence-centre

Conclusion

Thank you all for your interest !!!

Hope to see you all at the Intermediate Training in April

85 / 85

