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Machine Learning 
with Hyper-parameter Tuning

➔ We want to optimize the machine’s usage

➔ We have 256 threads on each node

➔ However XGBoost and Deep Learning do not 
scale across many CPUs

➔ Also, usually the datasets are small and even with 
batch size equal to the number of samples, utilise 
a small percentage of a GPU

➔ Each model run in different compute time, so 
parallelising many models is complex

XGBoost

Deep Learning



➔ XGBoost compute 
times

➔ repeated 5 times 
➔ and averaged

Scaling of XGBoost



MeluXina Supercomputer 
https://docs.lxp.lu/system/overview/

On 1 single node

https://docs.lxp.lu/system/overview/


CPU (main processor)

Core 1

a physical processing unit 
within a computer's central 
processing unit (CPU) that 
can independently execute 

instructions. 

Core 2 Core N

a sequence of instructions that can be 
executed independently by a CPU. A CPU 
with multiple threads can work on multiple 
tasks in parallel, by using hyper-threading 
technology. This allows a single core to work 
on multiple threads concurrently.

Thread 1 Thread 2

CPU-Cores-Threads

Thread 1 Thread 2 Thread nTask (Process) …



Tuning Strategy - We train in parallel, one model per:
➔ thread or 
➔ few threads if the potential models are less than the available threads



Potential Combinations = 101_000_000
x

10_000 rounds
x

5 cross validation folds
=

>5 Trillion Models

Search space of the Optimisation Algorithm



Cross Validation Strategy

➔ randomly permute 
without overlapping

# split train to train and validation

___perc_cv___ = 0.8; nof_folds = 5; obs = len(ytr)

tr_inds, vl_inds = split_tr_vl(obs,___perc_cv___,nof_folds,PERMUTE_TRAIN_TEST)

print("split_tr_vl done",datetime.datetime.now().strftime('%H:%M:%S.%f')[:-3], flush=True)
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2-Steps Tuning + Final Train
 
nof_1st_tune_epochs = 100 

nof_1st_tune_models = 1_000

nof_2nd_tune_epochs = 1_000 

nof_2nd_tune_models = 100

nof_final_blas_thr = 26



XGBoost
Tuning
Parameters



ANN Tuning Parameters



ANN Tuning Parameters



2-Steps Tuning 

50% of 1st round models 100 final models

➔ These results regard the optimal epoch for each model.
➔ The are the <1% best 
➔ The final range is really narrow
➔ We could claim that the algorithm converges to the true optimum



def run_mult_proc_xgb(combinations,LOGISTIC_REGR,nof_folds,Xtr,ytr,tr_inds,

vl_inds,Xte,yte,max_estimators,blas_threads):

    manager_tr = multiprocessing.Manager(); acc_tr_all = manager_tr.dict()

    manager_vl = multiprocessing.Manager(); acc_vl_all = manager_vl.dict()

    manager_te = multiprocessing.Manager(); acc_te_all = manager_te.dict()

    manager_nBest = multiprocessing.Manager(); nBest_all = manager_nBest.dict()

    jobs = []

    for i, (max_depth, learning_rate, colsample_bytree, subsample) in enumerate(combinations):

        p = multiprocessing.Process(target=train_xgb_folds,

            args=(i,max_depth,learning_rate,colsample_bytree,subsample,LOGISTIC_REGR,

                    nof_folds,Xtr,ytr,tr_inds,vl_inds,Xte,yte,acc_tr_all,acc_vl_all,

                    acc_te_all,nBest_all,max_estimators,blas_threads))            
        jobs.append(p)

        p.start()

    for ij, proc in enumerate(jobs):

        proc.join()

    return acc_tr_all, acc_vl_all, acc_te_all, nBest_all

import multiprocessing
➔ How we distribute the models across threads
➔ We call this twice, for the 2 tuning rounds



Train of the final model,
without cross validation

with threadpool_limits(limits=nof_final_blas_thr,user_api='blas'):

     history, model = train_pytorch(Xtr, ytr,

Xtr, ytr, Xte, yte, 

combinations[imax], 

int(epochs_all[imax]), 

path_, 

True)



Solution:

https://github.com/joblib/threadpoolctl

limit the number of threads used in 
the threadpool-backed of common 
native libraries used for scientific 
computing and data science (e.g. 
BLAS and OpenMP).

Conflict of numpy.linalg & xgboost

➔ 2 OpenMP runtimes are loaded in the same Python 
program!
◆ numpy comes with MKL and its Intel OpenMP 

(libiomp5) implementation
◆ xgboost is installed against GNU OpenMP 

(libgomp) 
➔ For different set of hyperparameters, different compute 

time is necessary (1st tuning)
➔ Assign different number of threads (2nd tuning)

➔ export OMP_NUM_THREADS=1 

➔ the total number of distributed threads should not exceed cpu_count, if blas_threads>1

with threadpool_limits (limits=blas_threads, 

user_api='blas'):

xgboost.fit(Xtr[tr_inds[fold],:], ytr[tr_inds[fold]])

https://github.com/joblib/threadpoolctl


Scaling
Dataset of 98308 Steel Frames with SSI

➔ We have 256-1=255 available 
Threads.

➔ When we run 1000 models, we 
expect ~<4X compute time 
relative to 255 AND 100 models.

➔ 140~4*45=180~<140
➔ Parallelisation worked!

➢ 140 seconds instead of 
10*45=450. 

➢ 1105 seconds instead of 
100*45=4500

A.M. van der Westhuizen, N.P. Bakas and G. Markou, (2023), 
Big data generation and comparative analysis of machine 
learning models in predicting the fundamental period of steel 
structures considering soil-structure interaction, 
Submitted for Publication.



Scaling

Dataset of 98308 Steel 
Frames with SSI

➔ 528 seconds 
instead of 3530

➔ 1991 seconds 
instead of 
35300

➔ Parallelisation 
worked!



Scaling

Dataset of 98308 
Steel Frames 
with SSI

For this dataset, 
using >8 
threads does 
not increase 
performance in 
the final round



Scaling Up

➔ nof_1st_tune_rounds: 100
➔ nof_1st_tune_models: 250 (*1000)

➔ nof_2nd_tune_rounds: 1000
➔ nof_2nd_tune_models: 25 (*250)

➔ nof_final_blas_thr: 8



Conclusions

➔ High Scaling on 1 single node!

◆ X 20+

➔ Optimal Number of Rounds

◆ X 100, Χ 1000, …

➔ 2-Step Tuning

◆ X 10+

➔ Cloud Computing

◆ X ∞
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