
Dr. Nikolaos Bakas
nibas@grnet.gr

Parallel computing techniques for
scaling hyperparameter tuning of

Gradient Boosted Trees and Deep Learning

Contents

➔ The problem of Scaling of Hyperparameter Tuning
➔ XGBoost & PyTorch
➔ MeluXina Supercomputer
➔ CPU, Threads & Processes
➔ Computational Bottlenecks
➔ Parallelization Strategy
➔ Proposed Cross Validation Algorithm
➔ Search space of the Optimisation Algorithm
➔ Parallelization with Multiprocessing
➔ Handling multiple OpenMP runtimes
➔ Scaling-Up Results

Machine Learning
with Hyper-parameter Tuning

➔ We want to optimize the machine’s usage

➔ We have 256 threads on each node

➔ However XGBoost and Deep Learning do not
scale across many CPUs

➔ Also, usually the datasets are small and even with
batch size equal to the number of samples, utilise
a small percentage of a GPU

➔ Each model run in different compute time, so
parallelising many models is complex

XGBoost

Deep Learning

➔ XGBoost compute
times

➔ repeated 5 times
➔ and averaged

Scaling of XGBoost

MeluXina Supercomputer
https://docs.lxp.lu/system/overview/

On 1 single node

https://docs.lxp.lu/system/overview/

CPU (main processor)

Core 1

a physical processing unit
within a computer's central
processing unit (CPU) that
can independently execute

instructions.

Core 2 Core N

a sequence of instructions that can be
executed independently by a CPU. A CPU
with multiple threads can work on multiple
tasks in parallel, by using hyper-threading
technology. This allows a single core to work
on multiple threads concurrently.

Thread 1 Thread 2

CPU-Cores-Threads

Thread 1 Thread 2 Thread nTask (Process) …

Tuning Strategy - We train in parallel, one model per:
➔ thread or
➔ few threads if the potential models are less than the available threads

Potential Combinations = 101_000_000
x

10_000 rounds
x

5 cross validation folds
=

>5 Trillion Models

Search space of the Optimisation Algorithm

Cross Validation Strategy

➔ randomly permute
without overlapping

split train to train and validation

___perc_cv___ = 0.8; nof_folds = 5; obs = len(ytr)

tr_inds, vl_inds = split_tr_vl(obs,___perc_cv___,nof_folds,PERMUTE_TRAIN_TEST)

print("split_tr_vl done",datetime.datetime.now().strftime('%H:%M:%S.%f')[:-3], flush=True)

Optimal Number of Rounds

Loss | .
 | .
 | .
 | . >optimum
 | . |
 | . | . . Validation
 | . .
 | | .
 | | .
 | . Train

 0 10 20 30 40 Epochs

2-Steps Tuning + Final Train

nof_1st_tune_epochs = 100

nof_1st_tune_models = 1_000

nof_2nd_tune_epochs = 1_000

nof_2nd_tune_models = 100

nof_final_blas_thr = 26

XGBoost
Tuning
Parameters

ANN Tuning Parameters

ANN Tuning Parameters

2-Steps Tuning

50% of 1st round models 100 final models

➔ These results regard the optimal epoch for each model.
➔ The are the <1% best
➔ The final range is really narrow
➔ We could claim that the algorithm converges to the true optimum

def run_mult_proc_xgb(combinations,LOGISTIC_REGR,nof_folds,Xtr,ytr,tr_inds,

vl_inds,Xte,yte,max_estimators,blas_threads):

 manager_tr = multiprocessing.Manager(); acc_tr_all = manager_tr.dict()

 manager_vl = multiprocessing.Manager(); acc_vl_all = manager_vl.dict()

 manager_te = multiprocessing.Manager(); acc_te_all = manager_te.dict()

 manager_nBest = multiprocessing.Manager(); nBest_all = manager_nBest.dict()

 jobs = []

 for i, (max_depth, learning_rate, colsample_bytree, subsample) in enumerate(combinations):

 p = multiprocessing.Process(target=train_xgb_folds,

 args=(i,max_depth,learning_rate,colsample_bytree,subsample,LOGISTIC_REGR,

 nof_folds,Xtr,ytr,tr_inds,vl_inds,Xte,yte,acc_tr_all,acc_vl_all,

 acc_te_all,nBest_all,max_estimators,blas_threads))
 jobs.append(p)

 p.start()

 for ij, proc in enumerate(jobs):

 proc.join()

 return acc_tr_all, acc_vl_all, acc_te_all, nBest_all

import multiprocessing
➔ How we distribute the models across threads
➔ We call this twice, for the 2 tuning rounds

Train of the final model,
without cross validation

with threadpool_limits(limits=nof_final_blas_thr,user_api='blas'):

 history, model = train_pytorch(Xtr, ytr,

Xtr, ytr, Xte, yte,

combinations[imax],

int(epochs_all[imax]),

path_,

True)

Solution:

https://github.com/joblib/threadpoolctl

limit the number of threads used in
the threadpool-backed of common
native libraries used for scientific
computing and data science (e.g.
BLAS and OpenMP).

Conflict of numpy.linalg & xgboost

➔ 2 OpenMP runtimes are loaded in the same Python
program!
◆ numpy comes with MKL and its Intel OpenMP

(libiomp5) implementation
◆ xgboost is installed against GNU OpenMP

(libgomp)
➔ For different set of hyperparameters, different compute

time is necessary (1st tuning)
➔ Assign different number of threads (2nd tuning)

➔ export OMP_NUM_THREADS=1

➔ the total number of distributed threads should not exceed cpu_count, if blas_threads>1

with threadpool_limits (limits=blas_threads,

user_api='blas'):

xgboost.fit(Xtr[tr_inds[fold],:], ytr[tr_inds[fold]])

https://github.com/joblib/threadpoolctl

Scaling
Dataset of 98308 Steel Frames with SSI

➔ We have 256-1=255 available
Threads.

➔ When we run 1000 models, we
expect ~<4X compute time
relative to 255 AND 100 models.

➔ 140~4*45=180~<140
➔ Parallelisation worked!

➢ 140 seconds instead of
10*45=450.

➢ 1105 seconds instead of
100*45=4500

A.M. van der Westhuizen, N.P. Bakas and G. Markou, (2023),
Big data generation and comparative analysis of machine
learning models in predicting the fundamental period of steel
structures considering soil-structure interaction,
Submitted for Publication.

Scaling

Dataset of 98308 Steel
Frames with SSI

➔ 528 seconds
instead of 3530

➔ 1991 seconds
instead of
35300

➔ Parallelisation
worked!

Scaling

Dataset of 98308
Steel Frames
with SSI

For this dataset,
using >8
threads does
not increase
performance in
the final round

Scaling Up

➔ nof_1st_tune_rounds: 100
➔ nof_1st_tune_models: 250 (*1000)

➔ nof_2nd_tune_rounds: 1000
➔ nof_2nd_tune_models: 25 (*250)

➔ nof_final_blas_thr: 8

Conclusions

➔ High Scaling on 1 single node!

◆ X 20+

➔ Optimal Number of Rounds

◆ X 100, Χ 1000, …

➔ 2-Step Tuning

◆ X 10+

➔ Cloud Computing

◆ X ∞

Nikos Bakas
nibas@grnet.gr

Acknowledgment: EuroCC 2 Project is
funded by the European Commission.
Parts of the runs were performed on the
MeluXina (https://docs.lxp.lu/)
Supercomputer.https://eurocc-greece.gr/

