
HPC Intermediate Training Event
EuroCC Training, 19 April 2021

MPI, OpenMP, and Hybrid Programming

th

1 / 57

Outline
Overview of the Message Passing Interface (MPI)

Basics of MPI

Distributed memory paradigm (as compared to shared memory)

Start-up and initialization

Synchronization

Collectives

Point-to-point communication

2 / 57

The Message Passing Interface
MPI: An Application Programmer Interface (API)

A library specification; determines functions, their names and arguments, and their
functionality

A de facto standard for programming distributed memory systems

Current speci�cation:

version 3.1 (MPI-3.1), since June 2015

Release Candidate for version 4.0 (MPI-4.0) as of November 2020

Several free (open) or vendor-provided implementations, e.g.:

Mvapich

OpenMPI

IntelMPI

3 / 57

The Message Passing Interface
MPI: An Application Programmer Interface (API)

A library specification; determines functions, their names and arguments, and their
functionality

A de facto standard for programming distributed memory systems

Current speci�cation:

version 3.1 (MPI-3.1), since June 2015

Release Candidate for version 4.0 (MPI-4.0) as of November 2020

Several free (open) or vendor-provided implementations, e.g.:

Mvapich

OpenMPI

IntelMPI

Distributed memory programming
Each process has its own memory domain

MPI functions facilitate:

Obtaining environment information about the running process, e.g., process id, number of
processes, etc.

Achieving communication between processes, e.g. synchronization, copying of data, etc.

3 / 57

Shared memory

Multiple processes share common memory
(common memory address space)

E.g. multi-core CPU, multi-socket node,
GPU threads, etc.

Programming models: OpenMP, pthreads,
MPI, CUDA (sort of)

Shared vs Distributed memory paradigm

4 / 57

Shared memory

Multiple processes share common memory
(common memory address space)

E.g. multi-core CPU, multi-socket node,
GPU threads, etc.

Programming models: OpenMP, pthreads,
MPI, CUDA (sort of)

Distributed memory

Processes have distinct memory domains
(different memory address space)

E.g. multiple nodes within a cluster, multiple
GPUs within a node

Programming models: MPI

Shared vs Distributed memory paradigm

4 / 57

Shared memory

Multiple processes share common memory
(common memory address space)

E.g. multi-core CPU, multi-socket node,
GPU threads, etc.

Programming models: OpenMP, pthreads,
MPI, CUDA (sort of)

Distributed memory

Processes have distinct memory domains
(different memory address space)

E.g. multiple nodes within a cluster, multiple
GPUs within a node

Programming models: MPI

Shared vs Distributed memory paradigm

5 / 57

Shared memory

Multiple processes share common memory
(common memory address space)

E.g. multi-core CPU, multi-socket node,
GPU threads, etc.

Programming models: OpenMP, pthreads,
MPI, CUDA (sort of)

Distributed memory

Processes have distinct memory domains
(different memory address space)

E.g. multiple nodes within a cluster, multiple
GPUs within a node

Programming models: MPI

Shared vs Distributed memory paradigm

6 / 57

Running a program in parallel
Trivially, in Linux it is simple to run a program in parallel

ssh node01 ./my_program &
ssh node02 ./my_program &
ssh node03 ./my_program &

my_program will run on each node identically

7 / 57

Running a program in parallel
Trivially, in Linux it is simple to run a program in parallel

ssh node01 ./my_program &
ssh node02 ./my_program &
ssh node03 ./my_program &

my_program will run on each node identically

An MPI program is run in a similar way, but via a wrapper script that also initializes the parallel
environment (environment variables, etc.)

mpirun -H node01,node02,node03 ./my_mpi_program

7 / 57

Running a program in parallel
Trivially, in Linux it is simple to run a program in parallel

ssh node01 ./my_program &
ssh node02 ./my_program &
ssh node03 ./my_program &

my_program will run on each node identically

An MPI program is run in a similar way, but via a wrapper script that also initializes the parallel
environment (environment variables, etc.)

mpirun -H node01,node02,node03 ./my_mpi_program

In practice, a scheduler is used which determines which nodes you are currently allocated,
meaning you usually will not need to explicitly specify the hostnames

mpirun ./my_mpi_program

7 / 57

Running a program in parallel
Trivially, in Linux it is simple to run a program in parallel

ssh node01 ./my_program &
ssh node02 ./my_program &
ssh node03 ./my_program &

my_program will run on each node identically

An MPI program is run in a similar way, but via a wrapper script that also initializes the parallel
environment (environment variables, etc.)

mpirun -H node01,node02,node03 ./my_mpi_program

In practice, a scheduler is used which determines which nodes you are currently allocated,
meaning you usually will not need to explicitly specify the hostnames

mpirun ./my_mpi_program

Depending on the system, instead of mpirun you may be required mpiexec or srun which take similar
(but not identical) arguments

7 / 57

Compiling an MPI program
An MPI program includes calls to MPI functions

8 / 57

Compiling an MPI program
An MPI program includes calls to MPI functions

In C, we include a single header �le with all function de�nitions, macros, and constants

#include <mpi.h>

8 / 57

Compiling an MPI program
An MPI program includes calls to MPI functions

In C, we include a single header �le with all function de�nitions, macros, and constants

#include <mpi.h>

Need to link against MPI libraries; precise invocation depends on the compiler, the MPI
implementation used, its version, etc., e.g.:

gcc -o my_mpi_program my_mpi_program.c -I/opt/mpi/include -L/opt/mpi/lib -lmpi

8 / 57

Compiling an MPI program
An MPI program includes calls to MPI functions

In C, we include a single header �le with all function de�nitions, macros, and constants

#include <mpi.h>

Need to link against MPI libraries; precise invocation depends on the compiler, the MPI
implementation used, its version, etc., e.g.:

gcc -o my_mpi_program my_mpi_program.c -I/opt/mpi/include -L/opt/mpi/lib -lmpi

Thankfully, knowing the locations of the MPI library and include �les is never needed in practice;
implementations come with wrappers that set the appropriate include paths and linker options:

mpicc -o my_mpi_program my_mpi_program.c

8 / 57

Initialization
MPI functions begin with the MPI_ pre�x in C

9 / 57

Initialization
MPI functions begin with the MPI_ pre�x in C

Call MPI_Init() �rst, before any other MPI call:

MPI_Init(&argc, &argv);

where argc and argv are the typical names used for the command line variables passed to main()

9 / 57

Initialization
MPI functions begin with the MPI_ pre�x in C

Call MPI_Init() �rst, before any other MPI call:

MPI_Init(&argc, &argv);

where argc and argv are the typical names used for the command line variables passed to main()

Before the end of the program, call MPI_Finalize(), otherwise the MPI runtime may assume your
program �nished in error

9 / 57

Initialization
MPI functions begin with the MPI_ pre�x in C

Call MPI_Init() �rst, before any other MPI call:

MPI_Init(&argc, &argv);

where argc and argv are the typical names used for the command line variables passed to main()

Before the end of the program, call MPI_Finalize(), otherwise the MPI runtime may assume your
program �nished in error

#include <mpi.h>

int
main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 /*
 ...
 ...
 ...
 */
 MPI_Finalize();
 return 0;
}

9 / 57

Initialization
Two functions you will almost always call

MPI_Comm_size(): gives the number of parallel process running ()

MPI_Comm_rank(): determines the rank of the process, i.e. a unique number between and
 that identi�es the calling process

A complete example:

#include <stdio.h>
#include <mpi.h>

int
main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 int nproc, rank;
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(" This is rank = %d of nproc = %d\n", rank, nproc);
 MPI_Finalize();
 return 0;
}

nproc

0
− 1nproc

10 / 57

Initialization
Two functions you will almost always call

MPI_Comm_size(): gives the number of parallel process running ()

MPI_Comm_rank(): determines the rank of the process, i.e. a unique number between and
 that identi�es the calling process

A complete example:

#include <stdio.h>
#include <mpi.h>

int
main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 int nproc, rank;
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(" This is rank = %d of nproc = %d\n", rank, nproc);
 MPI_Finalize();
 return 0;
}

MPI_COMM_WORLD is an MPI communicator. This speci�c communicator is the default
communicator, de�ned in mpi.h, and trivially speci�es all processes

A user can partition processes into subgroups by de�ning custom communicators, but this will
not be covered here

nproc

0
− 1nproc

10 / 57

Initialization
Two functions you will almost always call

MPI_Comm_size(): gives the number of parallel process running ()

MPI_Comm_rank(): determines the rank of the process, i.e. a unique number between and
 that identi�es the calling process

A complete example:

#include <stdio.h>
#include <mpi.h>

int
main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 int nproc, rank;
 MPI_Comm_size(MPI_COMM_WORLD, &nproc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 printf(" This is rank = %d of nproc = %d\n", rank, nproc);
 MPI_Finalize();
 return 0;
}

No assumptions can safely be made about the order in which the printf() statements occur, i.e. the
order in which each process prints is practically random

nproc

0
− 1nproc

11 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Synchronization
Compiling and running the previous program (assuming it is saved as example.c)

[user@front01 ~]$ mpicc -o example example.c
[user@front01 ~]$ mpirun -n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random; Synchronization between processes can be achieved using the
MPI_Barrier() function

All processes must call MPI_Barrier()

For any process to exit the barrier, all processes must have entered the barrier �rst

12 / 57

Collective operations
The �rst set of communication functions we will look at are collective operations

Collective: all processes must be involved in the operation (as opposed to point-to-point
communications)

Examples (this list is not exhaustive!):

Broadcast a variable from one process to all processes (Broadcast)

Distribute elements of an array on one process to multiple processes (Scatter)

Collect elements of arrays scattered over processes into a single process (Gather)

Sum a variable over all processes (Reduction)

13 / 57

Collective operations
The �rst set of communication functions we will look at are collective operations

Collective: all processes must be involved in the operation (as opposed to point-to-point
communications)

Examples (this list is not exhaustive!):

Broadcast a variable from one process to all processes (Broadcast)

Distribute elements of an array on one process to multiple processes (Scatter)

Collect elements of arrays scattered over processes into a single process (Gather)

Sum a variable over all processes (Reduction)

13 / 57

Collective operations
The �rst set of communication functions we will look at are collective operations

Collective: all processes must be involved in the operation (as opposed to point-to-point
communications)

Examples (this list is not exhaustive!):

Broadcast a variable from one process to all processes (Broadcast)

Distribute elements of an array on one process to multiple processes (Scatter)

Collect elements of arrays scattered over processes into a single process (Gather)

Sum a variable over all processes (Reduction)

13 / 57

Collective operations
The �rst set of communication functions we will look at are collective operations

Collective: all processes must be involved in the operation (as opposed to point-to-point
communications)

Examples (this list is not exhaustive!):

Broadcast a variable from one process to all processes (Broadcast)

Distribute elements of an array on one process to multiple processes (Scatter)

Collect elements of arrays scattered over processes into a single process (Gather)

Sum a variable over all processes (Reduction)

13 / 57

Collective operations: Broadcast
Broadcast:

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

14 / 57

Collective operations: Broadcast
Broadcast:

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

Example: Broadcast from rank 0 (root), the four-element, double precision array arr[]

MPI_Bcast(arr, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

14 / 57

Collective operations: Broadcast
Broadcast:

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

Example: Broadcast from rank 0 (root), the four-element, double precision array arr[]

MPI_Bcast(arr, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Example: Broadcast from rank 0 (root), the scalar integer variable var

MPI_Bcast(&var, 1, MPI_INT, 0, MPI_COMM_WORLD);

14 / 57

Collective operations: Broadcast
Broadcast:

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

Example: Broadcast from rank 0 (root), the four-element, double precision array arr[]

MPI_Bcast(arr, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Example: Broadcast from rank 0 (root), the scalar integer variable var

MPI_Bcast(&var, 1, MPI_INT, 0, MPI_COMM_WORLD);

The MPI_Datatype is important since MPI uses it to estimate the size in bytes that need to be
transfered

14 / 57

Collective operations: Broadcast
Broadcast:

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

Example: Broadcast from rank 0 (root), the four-element, double precision array arr[]

MPI_Bcast(arr, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Example: Broadcast from rank 0 (root), the scalar integer variable var

MPI_Bcast(&var, 1, MPI_INT, 0, MPI_COMM_WORLD);

The MPI_Datatype is important since MPI uses it to estimate the size in bytes that need to be
transfered

Full list of types available in MPI documentation. E.g. see:
https://www.mpich.org/static/docs/latest/www3/Constants.html

14 / 57

https://www.mpich.org/static/docs/latest/www3/Constants.html

Collective operations: Scatter
Scatter:

MPI_Scatter(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm
);

15 / 57

Collective operations: Scatter
Scatter:

MPI_Scatter(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm
);

sendcount is the number of elements to be sent to each process

15 / 57

Collective operations: Scatter
Scatter:

MPI_Scatter(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm
);

sendcount is the number of elements to be sent to each process

sendbuf is only relevant in the root process

15 / 57

Collective operations: Scatter
Scatter:

MPI_Scatter(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm
);

sendcount is the number of elements to be sent to each process

sendbuf is only relevant in the root process

Example: distribute a 12-element array from process 0, assuming 3 processes in total
(including root)

double arr_all[12]; /* <-- this only needs to be defined on process with rank == 0 */
double arr_proc[4];
MPI_Scatter(arr_all, 4, MPI_DOUBLE, arr_proc, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

15 / 57

Collective operations: Scatter
Scatter:

MPI_Scatter(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm
);

sendcount is the number of elements to be sent to each process

sendbuf is only relevant in the root process

Example: distribute a 12-element array from process 0, assuming 3 processes in total
(including root)

double arr_all[12]; /* <-- this only needs to be defined on process with rank == 0 */
double arr_proc[4];
MPI_Scatter(arr_all, 4, MPI_DOUBLE, arr_proc, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Example: distribute each element of a 4-element array to 4 processes in total (including root)

double arr[4]; /* <-- this only needs to be defined on process with rank == 0 */
double element;
MPI_Scatter(arr, 1, MPI_DOUBLE, &element, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

15 / 57

Collective operations: Gather
Gather:

MPI_Gather(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm
)

16 / 57

Collective operations: Gather
Gather:

MPI_Gather(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm
)

recvcount is the number of elements to be received by each process

16 / 57

Collective operations: Gather
Gather:

MPI_Gather(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm
)

recvcount is the number of elements to be received by each process

recvbuf is only relevant in the root process

16 / 57

Collective operations: Gather
Gather:

MPI_Gather(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm
)

recvcount is the number of elements to be received by each process

recvbuf is only relevant in the root process

Example: collect a 9-element array at process 0, by concatenating 3 elements from each of 3
processes in total (including root)

double arr_all[9]; /* <-- this only needs to be defined on process with rank == 0 */
double arr_proc[3];
MPI_Gather(arr_proc, 3, MPI_DOUBLE, arr_all, 3, MPI_DOUBLE, 0, MPI_COMM_WORLD);

16 / 57

Collective operations: Gather
Gather:

MPI_Gather(
 const void *sendbuf, int sendcount, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
 MPI_Comm comm
)

recvcount is the number of elements to be received by each process

recvbuf is only relevant in the root process

Example: collect a 9-element array at process 0, by concatenating 3 elements from each of 3
processes in total (including root)

double arr_all[9]; /* <-- this only needs to be defined on process with rank == 0 */
double arr_proc[3];
MPI_Gather(arr_proc, 3, MPI_DOUBLE, arr_all, 3, MPI_DOUBLE, 0, MPI_COMM_WORLD);

Example: collect a 4-element array at process 0, by concatenating an element from each of 4
processes in total (including root)

double arr[4]; /* <-- this only needs to be defined on process with rank == 0 */
double element;
MPI_Gather(&element, 1, MPI_DOUBLE, arr, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

16 / 57

Collective operations: Reduction
Reduction:

MPI_Reduce(
 const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root,
 MPI_Comm comm
)

17 / 57

Notes:

MPI_Op is an operation, e.g. MPI_SUM, MPI_PROD, etc.

The correct result of the operation depends on
specifying the datatype correctly

count is the number of elements of the arrays and is the
same for send and receive, e.g. in the example on the
right, count == 2

The operation is over all processes in comm

Collective operations: Reduction
Reduction:

MPI_Reduce(
 const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root,
 MPI_Comm comm
)

18 / 57

Example: Sum each element of a 3-element array over all
processes

double s_arr[3];
double r_arr[3]; /* <-- only needs to *
 * be defined on root */
MPI_Reduce(s_arr, r_arr, 3, MPI_DOUBLE,
 MPI_SUM, 0, MPI_COMM_WORLD);

Collective operations: Reduction
Reduction:

MPI_Reduce(
 const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root,
 MPI_Comm comm
)

19 / 57

Example: Sum each element of a 3-element array over all
processes

double s_arr[3];
double r_arr[3]; /* <-- only needs to *
 * be defined on root */
MPI_Reduce(s_arr, r_arr, 3, MPI_DOUBLE,
 MPI_SUM, 0, MPI_COMM_WORLD);

Example: Sum variable var over all processes

double var;
double sum; /* <-- only needs to *
 * be defined on root */
MPI_Reduce(&var, &sum, 1, MPI_DOUBLE,
 MPI_SUM, 0, MPI_COMM_WORLD);

Collective operations: Reduction
Reduction:

MPI_Reduce(
 const void *sendbuf, void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op, int root,
 MPI_Comm comm
)

19 / 57

Collective operations
Some additional notes on variants of the collectives we have covered

MPI_Scatterv() and MPI_Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the
process pool

Need specifying additional arguments containing offsets of the send or receive buffer

20 / 57

Collective operations
Some additional notes on variants of the collectives we have covered

MPI_Scatterv() and MPI_Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the
process pool

Need specifying additional arguments containing offsets of the send or receive buffer

MPI_Allreduce()

Same as MPI_Reduce(), but result is placed on all processes in the pool

Result is equivalent to MPI_Reduce() followed by an MPI_Bcast()

20 / 57

Collective operations
Some additional notes on variants of the collectives we have covered

MPI_Scatterv() and MPI_Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the
process pool

Need specifying additional arguments containing offsets of the send or receive buffer

MPI_Allreduce()

Same as MPI_Reduce(), but result is placed on all processes in the pool

Result is equivalent to MPI_Reduce() followed by an MPI_Bcast()

In-place operations

For some functions, can replace the send or receive buffer with MPI_IN_PLACE
 which buffer depends on the speci�c MPI function→

20 / 57

Collective operations
Some additional notes on variants of the collectives we have covered

MPI_Scatterv() and MPI_Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the
process pool

Need specifying additional arguments containing offsets of the send or receive buffer

MPI_Allreduce()

Same as MPI_Reduce(), but result is placed on all processes in the pool

Result is equivalent to MPI_Reduce() followed by an MPI_Bcast()

In-place operations

For some functions, can replace the send or receive buffer with MPI_IN_PLACE
 which buffer depends on the speci�c MPI function

Instructs MPI to use the same buffer for receive and send

→

20 / 57

Collective operations
Some additional notes on variants of the collectives we have covered

MPI_Scatterv() and MPI_Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the
process pool

Need specifying additional arguments containing offsets of the send or receive buffer

MPI_Allreduce()

Same as MPI_Reduce(), but result is placed on all processes in the pool

Result is equivalent to MPI_Reduce() followed by an MPI_Bcast()

In-place operations

For some functions, can replace the send or receive buffer with MPI_IN_PLACE
 which buffer depends on the speci�c MPI function

Instructs MPI to use the same buffer for receive and send

E.g. below, the sum will be placed in var of the root process (process with rank == 0):

if(rank != 0) {
 MPI_Reduce(&var, null, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
} else {
 MPI_Reduce(MPI_IN_PLACE, &var, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}

→

20 / 57

Point-to-point communication
Communications that involve transfer of data between two processes

21 / 57

Point-to-point communication
Communications that involve transfer of data between two processes

Most common case: send/receive

The sender process issues a send operation

The receiver process posts a receive operation

21 / 57

Point-to-point communication
Communications that involve transfer of data between two processes

Most common case: send/receive

The sender process issues a send operation

The receiver process posts a receive operation

Asynchronous in nature: caution needed for preventing deadlocks, e.g.

Sending to a process which has not posted a matching receive

Posting a receive which does not have a matching send

21 / 57

Point-to-point communication
Communications that involve transfer of data between two processes

Most common case: send/receive

The sender process issues a send operation

The receiver process posts a receive operation

Asynchronous in nature: caution needed for preventing deadlocks, e.g.

Sending to a process which has not posted a matching receive

Posting a receive which does not have a matching send

21 / 57

Point-to-point communication
Communications that involve transfer of data between two processes

Most common case: send/receive

The sender process issues a send operation

The receiver process posts a receive operation

Asynchronous in nature: caution needed for preventing deadlocks, e.g.

Sending to a process which has not posted a matching receive

Posting a receive which does not have a matching send

Two point-to-point communications are depicted above
⮑ between i) process 0 and 1 and between ii) process 2 and 3

21 / 57

Point-to-point communication
Send/Receive

MPI_Send(void *buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status *status)

22 / 57

Point-to-point communication
Send/Receive

MPI_Send(void *buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status *status)

Note the need to specify a source and destination rank (srce and dest)

n in MPI_Recv speci�es the max number of elements that can be received

22 / 57

Point-to-point communication
Send/Receive

MPI_Send(void *buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status *status)

Note the need to specify a source and destination rank (srce and dest)

n in MPI_Recv speci�es the max number of elements that can be received

The tag variables tags the message. In the receiving process, it must match what the sender
speci�ed

22 / 57

Point-to-point communication
Send/Receive

MPI_Send(void *buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status *status)

Note the need to specify a source and destination rank (srce and dest)

n in MPI_Recv speci�es the max number of elements that can be received

The tag variables tags the message. In the receiving process, it must match what the sender
speci�ed

 Use of MPI_ANY_TAG in place of tag in MPI_Recv() means "accept messages with any value for tag"→

22 / 57

Point-to-point communication
Send/Receive

MPI_Send(void *buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status *status)

Note the need to specify a source and destination rank (srce and dest)

n in MPI_Recv speci�es the max number of elements that can be received

The tag variables tags the message. In the receiving process, it must match what the sender
speci�ed

 Use of MPI_ANY_TAG in place of tag in MPI_Recv() means "accept messages with any value for tag"

Use of MPI_ANY_SOURCE in MPI_Recv() means "accept data from any source"

→

22 / 57

Point-to-point communication
Send/Receive

MPI_Send(void *buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void *buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status *status)

Note the need to specify a source and destination rank (srce and dest)

n in MPI_Recv speci�es the max number of elements that can be received

The tag variables tags the message. In the receiving process, it must match what the sender
speci�ed

 Use of MPI_ANY_TAG in place of tag in MPI_Recv() means "accept messages with any value for tag"

Use of MPI_ANY_SOURCE in MPI_Recv() means "accept data from any source"

status can be used to query the result of the receive (e.g. how many elements were received). We
will use MPI_STATUS_IGNORE in place of status, which ignores the status

→

22 / 57

Point-to-point communication
Send/Receive; a trivial example

23 / 57

Point-to-point communication
Send/Receive; a trivial example

if(rank == i) {
 MPI_Send(s_arr, 4, MPI_DOUBLE, j, 0, MPI_COMM_WORLD);
}
if(rank == j) {
 MPI_Recv(r_arr, 4, MPI_DOUBLE, i, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}

23 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

24 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

This will not work:

MPI_Send(&s_var, 1, MPI_DOUBLE, rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

25 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

This will not work:

MPI_Send(&s_var, 1, MPI_DOUBLE, rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

It results in a deadlock:

an MPI_Recv() can only be posted once an MPI_Send() completes

an MPI_Send() can only complete if a matching MPI_Recv() is posted

25 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

This will not work:

MPI_Send(&s_var, 1, MPI_DOUBLE, rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

It results in a deadlock:

an MPI_Recv() can only be posted once an MPI_Send() completes

an MPI_Send() can only complete if a matching MPI_Recv() is posted

One can serialize the communications, i.e. use a loop to determine the order of send/receives

25 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

This will not work:

MPI_Send(&s_var, 1, MPI_DOUBLE, rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

It results in a deadlock:

an MPI_Recv() can only be posted once an MPI_Send() completes

an MPI_Send() can only complete if a matching MPI_Recv() is posted

One can serialize the communications, i.e. use a loop to determine the order of send/receives

Serializes communications that may be done faster in parallel

25 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

This will not work:

MPI_Send(&s_var, 1, MPI_DOUBLE, rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

It results in a deadlock:

an MPI_Recv() can only be posted once an MPI_Send() completes

an MPI_Send() can only complete if a matching MPI_Recv() is posted

One can serialize the communications, i.e. use a loop to determine the order of send/receives

Serializes communications that may be done faster in parallel

Inelegant, obscure, and error-prone

25 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

A more ef�cient and elegant solution is to use MPI_Sendrecv():

MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int srce, int recvtag,
 MPI_Comm comm, MPI_Status *status)

26 / 57

Point-to-point communication
It is common in parallel applications to require that every process communicates with another
process, e.g. a neighboring process

A more ef�cient and elegant solution is to use MPI_Sendrecv():

MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag,
 void *recvbuf, int recvcount, MPI_Datatype recvtype, int srce, int recvtag,
 MPI_Comm comm, MPI_Status *status)

For the depicted example:

MPI_Sendrecv(&s_var, 1, MPI_DOUBLE, rank+1, 0,
 &r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG,
 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

26 / 57

Point-to-point communications
Some additional notes on variants of the point-to-point communications we have covered

27 / 57

Point-to-point communications
Some additional notes on variants of the point-to-point communications we have covered

MPI_Isend() and MPI_Irecv()

Non-blocking variants. The I stands for "immediate"

27 / 57

Point-to-point communications
Some additional notes on variants of the point-to-point communications we have covered

MPI_Isend() and MPI_Irecv()

Non-blocking variants. The I stands for "immediate"

Functions return immediately, i.e. the functions don't block waiting for sendbuf to be sent or
recvbuf to be received

27 / 57

Point-to-point communications
Some additional notes on variants of the point-to-point communications we have covered

MPI_Isend() and MPI_Irecv()

Non-blocking variants. The I stands for "immediate"

Functions return immediately, i.e. the functions don't block waiting for sendbuf to be sent or
recvbuf to be received

The function MPI_Wait() is used to block until the operation has complete

 MPI_Isend(sendbuf, ..., request);
 /*
 * More code can come here, provided it
 * does not modify sendbuf, which is
 * assumed to be "in-flight"
 */
 MPI_Wait(request, ...);

27 / 57

Point-to-point communications
Some additional notes on variants of the point-to-point communications we have covered

MPI_Isend() and MPI_Irecv()

Non-blocking variants. The I stands for "immediate"

Functions return immediately, i.e. the functions don't block waiting for sendbuf to be sent or
recvbuf to be received

The function MPI_Wait() is used to block until the operation has complete

 MPI_Isend(sendbuf, ..., request);
 /*
 * More code can come here, provided it
 * does not modify sendbuf, which is
 * assumed to be "in-flight"
 */
 MPI_Wait(request, ...);

MPI_Sendrecv_replace()

Like MPI_Sendrecv() but with a single buf rather than separate sendbuf and recvbuf

27 / 57

Point-to-point communications
Some additional notes on variants of the point-to-point communications we have covered

MPI_Isend() and MPI_Irecv()

Non-blocking variants. The I stands for "immediate"

Functions return immediately, i.e. the functions don't block waiting for sendbuf to be sent or
recvbuf to be received

The function MPI_Wait() is used to block until the operation has complete

 MPI_Isend(sendbuf, ..., request);
 /*
 * More code can come here, provided it
 * does not modify sendbuf, which is
 * assumed to be "in-flight"
 */
 MPI_Wait(request, ...);

MPI_Sendrecv_replace()

Like MPI_Sendrecv() but with a single buf rather than separate sendbuf and recvbuf
⮑ The receive message overwrites the send message

27 / 57

Exercises

28 / 57

Exercises
cp -r /onyx/data/edu12/mpi/ex .

Exercises follow a common structure

29 / 57

Exercises
cp -r /onyx/data/edu12/mpi/ex .

Exercises follow a common structure

With the previous training event being a prerequisite, it is assumed that you:

Know how to login to Cyclone, navigate the �lesystem, and modify �les

Are familiar with Slurm, the job scheduler, and its commands: sbatch, squeue, etc.

Are familiar with the modules system

29 / 57

Exercises
cp -r /onyx/data/edu12/mpi/ex .

Exercises follow a common structure

With the previous training event being a prerequisite, it is assumed that you:

Know how to login to Cyclone, navigate the �lesystem, and modify �les

Are familiar with Slurm, the job scheduler, and its commands: sbatch, squeue, etc.

Are familiar with the modules system

Each folder includes (where ${n} below is the exercise number, i.e. 01, 02, etc.):

A make�le (Makefile)

A .c source code �le (ex${n}.c)

A submit script (sub-${n}.sh)

29 / 57

Exercises
cp -r /onyx/data/edu12/mpi/ex .

Exercises follow a common structure

With the previous training event being a prerequisite, it is assumed that you:

Know how to login to Cyclone, navigate the �lesystem, and modify �les

Are familiar with Slurm, the job scheduler, and its commands: sbatch, squeue, etc.

Are familiar with the modules system

Each folder includes (where ${n} below is the exercise number, i.e. 01, 02, etc.):

A make�le (Makefile)

A .c source code �le (ex${n}.c)

A submit script (sub-${n}.sh)

Our work�ow will typically be:

Modify ex${n}.c as instructed

Compile by typing make

Submit the job script sbatch sub-${n}.sh

Look at the output, which can be found in ex${n}-output.txt

29 / 57

Exercises
cp -r /onyx/data/edu12/mpi/ex .

Exercises follow a common structure

With the previous training event being a prerequisite, it is assumed that you:

Know how to login to Cyclone, navigate the �lesystem, and modify �les

Are familiar with Slurm, the job scheduler, and its commands: sbatch, squeue, etc.

Are familiar with the modules system

Each folder includes (where ${n} below is the exercise number, i.e. 01, 02, etc.):

A make�le (Makefile)

A .c source code �le (ex${n}.c)

A submit script (sub-${n}.sh)

Our work�ow will typically be:

Modify ex${n}.c as instructed

Compile by typing make

Submit the job script sbatch sub-${n}.sh

Look at the output, which can be found in ex${n}-output.txt

Note that if you have modi�ed ex${n}.c correctly, the job should complete in less than one minute

29 / 57

Exercises
Exercises are mostly complete but require some minor modi�cations by you

30 / 57

Exercises
Exercises are mostly complete but require some minor modi�cations by you

This is mostly to "encourage" reading and understanding the code

30 / 57

Exercises
Exercises are mostly complete but require some minor modi�cations by you

This is mostly to "encourage" reading and understanding the code

The MPI functions demonstrated in each exercise are:

ex01: Use of MPI_Comm_rank() and MPI_Comm_size()

ex02: Use of MPI_Barrier()

ex03: Use of MPI_Bcast()

ex04: Use of MPI_Scatter()

ex05: Use of MPI_Scatter() and MPI_Gather()

ex06: Use of MPI_Scatter() and MPI_Reduce()

ex07: Use of MPI_Send() and MPI_Recv()

ex08: Use of MPI_Sendrecv()

30 / 57

Exercises
Exercises are mostly complete but require some minor modi�cations by you

This is mostly to "encourage" reading and understanding the code

The MPI functions demonstrated in each exercise are:

ex01: Use of MPI_Comm_rank() and MPI_Comm_size()

ex02: Use of MPI_Barrier()

ex03: Use of MPI_Bcast()

ex04: Use of MPI_Scatter()

ex05: Use of MPI_Scatter() and MPI_Gather()

ex06: Use of MPI_Scatter() and MPI_Reduce()

ex07: Use of MPI_Send() and MPI_Recv()

ex08: Use of MPI_Sendrecv()

All exercises have been tested with OpenMPI and the GNU Compiler. Please use:

module load gompi

for all exercises.

30 / 57

Exercises
Ex01

Modify ex01.c to call MPI_Comm_size() and MPI_Comm_rank() with the appropriate arguments

int nproc, rank;
/*
* TODO: call `MPI_Comm_size()' and `MPI_Comm_rank()' with the
* appropriate arguments
*/
MPI_Comm_size(/* TODO */);
MPI_Comm_rank(/* TODO */);

31 / 57

Exercises
Ex01

Modify ex01.c to call MPI_Comm_size() and MPI_Comm_rank() with the appropriate arguments

int nproc, rank;
/*
* TODO: call `MPI_Comm_size()' and `MPI_Comm_rank()' with the
* appropriate arguments
*/
MPI_Comm_size(/* TODO */);
MPI_Comm_rank(/* TODO */);

To compile, type make. Remember to �rst load the appropriate module (gompi):

[user@front01 ex01]$ module load gompi
[user@front01 ex01]$ make
mpicc -c ex01.c
mpicc -o ex01 ex01.o
[user@front01 ex01]$

31 / 57

Exercises
Ex01

A job script has been prepared to run ex01:

[user@front01 ex01]$ cat sub-01.sh
#!/bin/bash
#SBATCH --job-name=01
#SBATCH --nodes=2
#SBATCH --ntasks=8
#SBATCH --output=ex01-output.txt
#SBATCH --time=00:01:00

module load gompi
mpirun ./ex01

32 / 57

Exercises
Ex01

A job script has been prepared to run ex01:

[user@front01 ex01]$ cat sub-01.sh
#!/bin/bash
#SBATCH --job-name=01
#SBATCH --nodes=2
#SBATCH --ntasks=8
#SBATCH --output=ex01-output.txt
#SBATCH --time=00:01:00

module load gompi
mpirun ./ex01

2 nodes, 8 processes, meaning 4 processes per node

32 / 57

Exercises
Ex01

A job script has been prepared to run ex01:

[user@front01 ex01]$ cat sub-01.sh
#!/bin/bash
#SBATCH --job-name=01
#SBATCH --nodes=2
#SBATCH --ntasks=8
#SBATCH --output=ex01-output.txt
#SBATCH --time=00:01:00

module load gompi
mpirun ./ex01

2 nodes, 8 processes, meaning 4 processes per node

program output will be redirected to �le ex01-output.txt

32 / 57

Exercises
Ex01

A job script has been prepared to run ex01:

[user@front01 ex01]$ cat sub-01.sh
#!/bin/bash
#SBATCH --job-name=01
#SBATCH --nodes=2
#SBATCH --ntasks=8
#SBATCH --output=ex01-output.txt
#SBATCH --time=00:01:00

module load gompi
mpirun ./ex01

2 nodes, 8 processes, meaning 4 processes per node

program output will be redirected to �le ex01-output.txt

requests 1 minute. If not done by then, the scheduler will kill the job

32 / 57

Exercises
Ex01

Submit the job script:

[user@front01 ex01]$ sbatch sub-01.sh
Submitted batch job 69711
[user@front01 ex01]$

33 / 57

Exercises
Ex01

Submit the job script:

[user@front01 ex01]$ sbatch sub-01.sh
Submitted batch job 69711
[user@front01 ex01]$

Check status of job:

[user@front01 ex01]$ squeue -u $USER
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
69712 cpu 01 user R 0:00 2 cn[01-02]
[user@front01 ex01]$

33 / 57

Exercises
Ex01

Submit the job script:

[user@front01 ex01]$ sbatch sub-01.sh
Submitted batch job 69711
[user@front01 ex01]$

Check status of job:

[user@front01 ex01]$ squeue -u $USER
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
69712 cpu 01 user R 0:00 2 cn[01-02]
[user@front01 ex01]$

The job runs very quickly. You may see no output above if the job has �nished:

[user@front01 ex01]$ squeue -u $USER
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
[user@front01 ex01]$

33 / 57

Exercises
Ex01

If done, the �le ex01-output.txt should have been created

Inspect the �le:

[user@front01 ex01]$ cat ex01-output.txt
This is rank = 3 of nproc = 8 on node: cn01
This is rank = 0 of nproc = 8 on node: cn01
This is rank = 1 of nproc = 8 on node: cn01
This is rank = 2 of nproc = 8 on node: cn01
This is rank = 7 of nproc = 8 on node: cn02
This is rank = 5 of nproc = 8 on node: cn02
This is rank = 6 of nproc = 8 on node: cn02
This is rank = 4 of nproc = 8 on node: cn02
[user@front01 ex01]$

34 / 57

Exercises
Ex01

If done, the �le ex01-output.txt should have been created

Inspect the �le:

[user@front01 ex01]$ cat ex01-output.txt
This is rank = 3 of nproc = 8 on node: cn01
This is rank = 0 of nproc = 8 on node: cn01
This is rank = 1 of nproc = 8 on node: cn01
This is rank = 2 of nproc = 8 on node: cn01
This is rank = 7 of nproc = 8 on node: cn02
This is rank = 5 of nproc = 8 on node: cn02
This is rank = 6 of nproc = 8 on node: cn02
This is rank = 4 of nproc = 8 on node: cn02
[user@front01 ex01]$

Note the order is nondeterministic; whichever process reaches the print statement �rst prints

34 / 57

Exercises
Ex01

If done, the �le ex01-output.txt should have been created

Inspect the �le:

[user@front01 ex01]$ cat ex01-output.txt
This is rank = 3 of nproc = 8 on node: cn01
This is rank = 0 of nproc = 8 on node: cn01
This is rank = 1 of nproc = 8 on node: cn01
This is rank = 2 of nproc = 8 on node: cn01
This is rank = 7 of nproc = 8 on node: cn02
This is rank = 5 of nproc = 8 on node: cn02
This is rank = 6 of nproc = 8 on node: cn02
This is rank = 4 of nproc = 8 on node: cn02
[user@front01 ex01]$

Note the order is nondeterministic; whichever process reaches the print statement �rst prints

We can use synchronization to serialize the print statements and ensure the correct order

34 / 57

Exercises
Ex02

ex02.c is similar to ex01.c

A for-loop is included over the print statement:

/*
* TODO: add an MPI_Barrier() to ensure the ranks print in-order
*/
for(int i=0; i<nproc; i++) {
 if(rank == i)
 printf(" This is rank = %d of nproc = %d on node: %s\n", rank, nproc, hname);
}

35 / 57

Exercises
Ex02

ex02.c is similar to ex01.c

A for-loop is included over the print statement:

/*
* TODO: add an MPI_Barrier() to ensure the ranks print in-order
*/
for(int i=0; i<nproc; i++) {
 if(rank == i)
 printf(" This is rank = %d of nproc = %d on node: %s\n", rank, nproc, hname);
}

Study the code and carefully place an MPI_Barrier() so that the print statements will be executed in
rank ordered

35 / 57

Exercises
Ex02

ex02.c is similar to ex01.c

A for-loop is included over the print statement:

/*
* TODO: add an MPI_Barrier() to ensure the ranks print in-order
*/
for(int i=0; i<nproc; i++) {
 if(rank == i)
 printf(" This is rank = %d of nproc = %d on node: %s\n", rank, nproc, hname);
}

Study the code and carefully place an MPI_Barrier() so that the print statements will be executed in
rank ordered

As before, when done:

use make to compile and

sbatch sub-02.sh to submit the prepared job script

35 / 57

Exercises
Ex02

Inspect the �le ex02-output.txt:

[user@front01 ex02]$ cat ex02-output.txt
This is rank = 0 of nproc = 8 on node: cn01
This is rank = 1 of nproc = 8 on node: cn01
This is rank = 2 of nproc = 8 on node: cn01
This is rank = 3 of nproc = 8 on node: cn01
This is rank = 4 of nproc = 8 on node: cn02
This is rank = 5 of nproc = 8 on node: cn02
This is rank = 6 of nproc = 8 on node: cn02
This is rank = 7 of nproc = 8 on node: cn02
[user@front01 ex02]$

36 / 57

Exercises
Ex02

Inspect the �le ex02-output.txt:

[user@front01 ex02]$ cat ex02-output.txt
This is rank = 0 of nproc = 8 on node: cn01
This is rank = 1 of nproc = 8 on node: cn01
This is rank = 2 of nproc = 8 on node: cn01
This is rank = 3 of nproc = 8 on node: cn01
This is rank = 4 of nproc = 8 on node: cn02
This is rank = 5 of nproc = 8 on node: cn02
This is rank = 6 of nproc = 8 on node: cn02
This is rank = 7 of nproc = 8 on node: cn02
[user@front01 ex02]$

The print statements should appear in rank order

36 / 57

Exercises
Ex03

This exercise demonstrates MPI_Bcast()

A �le data.txt is included:

[user@front01 ex03]$ cat data.txt
3.14159265359
[user@front01 ex03]$

37 / 57

Exercises
Ex03

This exercise demonstrates MPI_Bcast()

A �le data.txt is included:

[user@front01 ex03]$ cat data.txt
3.14159265359
[user@front01 ex03]$

In ex03.c, the root process (process with rank == 0) calls the readline() function to read the single line
from the �le

37 / 57

Exercises
Ex03

This exercise demonstrates MPI_Bcast()

A �le data.txt is included:

[user@front01 ex03]$ cat data.txt
3.14159265359
[user@front01 ex03]$

In ex03.c, the root process (process with rank == 0) calls the readline() function to read the single line
from the �le

Your task is to use a MPI_Bcast() to broadcast the variable read to all processes:

/*
 * TODO: add an MPI_Bcast() with the appropriate arguments to
 * broadcast variable `val' from the root process to all processes
 */
MPI_Bcast(/* TODO */);

37 / 57

Exercises
Ex03

If done correctly, ex03-output.txt should include the following output:

[user@front01 ex03]$ cat ex03-output.txt
This is rank = 7 of nproc = 8 on node: cn02 | Got from root var = 3.141593
This is rank = 6 of nproc = 8 on node: cn02 | Got from root var = 3.141593
This is rank = 5 of nproc = 8 on node: cn02 | Got from root var = 3.141593
This is rank = 4 of nproc = 8 on node: cn02 | Got from root var = 3.141593
This is rank = 3 of nproc = 8 on node: cn01 | Got from root var = 3.141593
This is rank = 0 of nproc = 8 on node: cn01 | Got from root var = 3.141593
This is rank = 2 of nproc = 8 on node: cn01 | Got from root var = 3.141593
This is rank = 1 of nproc = 8 on node: cn01 | Got from root var = 3.141593
[user@front01 ex03]$

With the order being undetermined also in this case

38 / 57

Exercises
Ex04

This exercise demonstrates the scatter operation

The �le data.txt now includes eight lines:

[user@front01 ex04]$ cat data.txt
0.42816572487
0.57721566490
0.66274341935
0.69314718056
1.41421356237
1.61803398875
2.71828182846
3.14159265359
[user@front01 ex04]$

39 / 57

Exercises
Ex04

This exercise demonstrates the scatter operation

The �le data.txt now includes eight lines:

[user@front01 ex04]$ cat data.txt
0.42816572487
0.57721566490
0.66274341935
0.69314718056
1.41421356237
1.61803398875
2.71828182846
3.14159265359
[user@front01 ex04]$

The root process reads the eight lines into the eight-element double precision array vals[] using
the function readlines()

/*
 * root process: read `n' lines of "data.txt" into array `vars[]'
 */
int nelems = 8;
double vars[nelems];
if(rank == 0) {
 char fname[] = "data.txt";
 readlines(nelems, vars, fname);
}

39 / 57

Exercises
Ex04

Your task is to scatter the array vals[] so that each of the eight processes receives one element of
the array into variable var:

double var;
/*
 * TODO: use an MPI_Scatter() to distribute the elements of `vars[]'
 * to the processes, one element for each process. Assume the number
 * of processes is the same as the number of elements.
 */
MPI_Scatter(/* TODO */);

40 / 57

Exercises
Ex04

Your task is to scatter the array vals[] so that each of the eight processes receives one element of
the array into variable var:

double var;
/*
 * TODO: use an MPI_Scatter() to distribute the elements of `vars[]'
 * to the processes, one element for each process. Assume the number
 * of processes is the same as the number of elements.
 */
MPI_Scatter(/* TODO */);

Once done, compile (make) and submit the job script (sbatch sub-04.sh)

40 / 57

Exercises
Ex04

Your task is to scatter the array vals[] so that each of the eight processes receives one element of
the array into variable var:

double var;
/*
 * TODO: use an MPI_Scatter() to distribute the elements of `vars[]'
 * to the processes, one element for each process. Assume the number
 * of processes is the same as the number of elements.
 */
MPI_Scatter(/* TODO */);

Once done, compile (make) and submit the job script (sbatch sub-04.sh)

If done correctly, you should see the following in ex04-output.txt:

[user@front01 ex04]$ cat ex04-output.txt
This is rank = 2 of nproc = 8 on node: cn01 | Got from root var = 0.662743
This is rank = 3 of nproc = 8 on node: cn01 | Got from root var = 0.693147
This is rank = 1 of nproc = 8 on node: cn01 | Got from root var = 0.577216
This is rank = 4 of nproc = 8 on node: cn02 | Got from root var = 1.414214
This is rank = 5 of nproc = 8 on node: cn02 | Got from root var = 1.618034
This is rank = 6 of nproc = 8 on node: cn02 | Got from root var = 2.718282
This is rank = 0 of nproc = 8 on node: cn01 | Got from root var = 0.428166
This is rank = 7 of nproc = 8 on node: cn02 | Got from root var = 3.141593
[user@front01 ex04]$

40 / 57

Exercises
Ex04

Your task is to scatter the array vals[] so that each of the eight processes receives one element of
the array into variable var:

double var;
/*
 * TODO: use an MPI_Scatter() to distribute the elements of `vars[]'
 * to the processes, one element for each process. Assume the number
 * of processes is the same as the number of elements.
 */
MPI_Scatter(/* TODO */);

Once done, compile (make) and submit the job script (sbatch sub-04.sh)

If done correctly, you should see the following in ex04-output.txt:

[user@front01 ex04]$ cat ex04-output.txt
This is rank = 2 of nproc = 8 on node: cn01 | Got from root var = 0.662743
This is rank = 3 of nproc = 8 on node: cn01 | Got from root var = 0.693147
This is rank = 1 of nproc = 8 on node: cn01 | Got from root var = 0.577216
This is rank = 4 of nproc = 8 on node: cn02 | Got from root var = 1.414214
This is rank = 5 of nproc = 8 on node: cn02 | Got from root var = 1.618034
This is rank = 6 of nproc = 8 on node: cn02 | Got from root var = 2.718282
This is rank = 0 of nproc = 8 on node: cn01 | Got from root var = 0.428166
This is rank = 7 of nproc = 8 on node: cn02 | Got from root var = 3.141593
[user@front01 ex04]$

Pro tip: you can sort the output by piping through sort, i.e. cat ex04-output.txt | sort 40 / 57

Exercises
Ex05

This exercise demonstrates the gather operation

The exercise starts like ex04:

The root process reads the eight values from data.txt and stores them in vars[]

41 / 57

Exercises
Ex05

This exercise demonstrates the gather operation

The exercise starts like ex04:

The root process reads the eight values from data.txt and stores them in vars[]

We would like:

41 / 57

Exercises
Ex05

This exercise demonstrates the gather operation

The exercise starts like ex04:

The root process reads the eight values from data.txt and stores them in vars[]

We would like:

The elements of vars[] to be scattered, one element to each of eight processes (same as ex04)

41 / 57

Exercises
Ex05

This exercise demonstrates the gather operation

The exercise starts like ex04:

The root process reads the eight values from data.txt and stores them in vars[]

We would like:

The elements of vars[] to be scattered, one element to each of eight processes (same as ex04)

Each process to divide its element, stored in var, by two

41 / 57

Exercises
Ex05

This exercise demonstrates the gather operation

The exercise starts like ex04:

The root process reads the eight values from data.txt and stores them in vars[]

We would like:

The elements of vars[] to be scattered, one element to each of eight processes (same as ex04)

Each process to divide its element, stored in var, by two

The process' var variables to be gathered back into vars[] of the root process

41 / 57

Exercises
Ex05

This exercise demonstrates the gather operation

The exercise starts like ex04:

The root process reads the eight values from data.txt and stores them in vars[]

We would like:

The elements of vars[] to be scattered, one element to each of eight processes (same as ex04)

Each process to divide its element, stored in var, by two

The process' var variables to be gathered back into vars[] of the root process

 /* TODO: use an MPI_Scatter() to distribute the elements of `vars[]'
 * to the processes, one element for each process. Assume the number
 * of processes is the same as the number of elements. Same as in
 * exercise ex04.
 */
 MPI_Scatter(/* TODO */);

 /* Divide by two on each rank */
 var = var*0.5;

 /* TODO: use an MPI_Gather() to collect `var' from each rank to the
 * array `vars[]' on the root process
 */
 MPI_Gather(/* TODO */);

41 / 57

Exercises
Ex05

At the end, the root process prints all elements of vars[]

/*
 * root process: print the elements of `vars[]' obtained via the
 * `MPI_Gather()'
 */
if(rank == 0)
 for(int i=0; i<nelems; i++)
 printf(" vars[%d] = %lf\n", i, vars[i]);

42 / 57

Exercises
Ex05

At the end, the root process prints all elements of vars[]

/*
 * root process: print the elements of `vars[]' obtained via the
 * `MPI_Gather()'
 */
if(rank == 0)
 for(int i=0; i<nelems; i++)
 printf(" vars[%d] = %lf\n", i, vars[i]);

Inspect the output ex05-output.txt and ensure the result is correct:

[user@front01 ex05]$ cat ex05-output.txt
vars[0] = 0.214083
vars[1] = 0.288608
vars[2] = 0.331372
vars[3] = 0.346574
vars[4] = 0.707107
vars[5] = 0.809017
vars[6] = 1.359141
vars[7] = 1.570796
[user@front01 ex05]$

42 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

43 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

We would like:

43 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

We would like:

The root process to read all elements into an array vars[]

43 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

We would like:

The root process to read all elements into an array vars[]

The elements to be scattered to all processes
⮑ Each process should receive nelems_loc = nelems / nproc elements

43 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

We would like:

The root process to read all elements into an array vars[]

The elements to be scattered to all processes
⮑ Each process should receive nelems_loc = nelems / nproc elements

Each process to sum its local elements, storing the result into sum_loc

43 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

We would like:

The root process to read all elements into an array vars[]

The elements to be scattered to all processes
⮑ Each process should receive nelems_loc = nelems / nproc elements

Each process to sum its local elements, storing the result into sum_loc

To use a reduction operation to obtain the grand total over all 2520 elements

43 / 57

Exercises
Ex06

This exercise demonstrates the reduction operation

data.txt is now a �le with 2520 random numbers, one per line (nelems = 2520)

We would like:

The root process to read all elements into an array vars[]

The elements to be scattered to all processes
⮑ Each process should receive nelems_loc = nelems / nproc elements

Each process to sum its local elements, storing the result into sum_loc

To use a reduction operation to obtain the grand total over all 2520 elements

Note that in ex06.c we explicitly check that the number of processes divides the number of
elements in data.txt:

/*
 * Abort if the number of processes does not divide `nelems' exactly
 */
int nelems = 2520;
if(nelems % nproc != 0) {
 fprintf(stderr, " nelems = %d not divisible by nproc = %d\n", nelems, nproc);
 MPI_Abort(MPI_COMM_WORLD, 1);
}

43 / 57

Exercises
Ex06

Your TODOs are to complete the scatter and reduction operations:

/*
 * TODO: use an MPI_Scatter() to distribute the elements of `vars[]'
 * to each process' `vars_loc[]' array
 */
MPI_Scatter(/* TODO */);

/*
 * `sum_loc' holds the sum over each process' local elements
 */
double sum_loc = 0;
for(int i=0; i<nelems_loc; i++)
sum_loc += vars_loc[i];

/*
 * TODO: use an MPI_Reduce() to sum `sum_loc' over all processes and
 * store in `sum' of the root process
 */
double sum;
MPI_Reduce(/* TODO */);

44 / 57

Exercises
Ex06

The root process prints the result at the end. If correct, you should see:

[user@front01 ex06]$ cat ex06-output.txt
Used 8 processes, sum = 1266.960662
[user@front01 ex06]$

45 / 57

Exercises
Ex06

The root process prints the result at the end. If correct, you should see:

[user@front01 ex06]$ cat ex06-output.txt
Used 8 processes, sum = 1266.960662
[user@front01 ex06]$

Note that ex06.c allows running with any number of processes which divide 2520 exactly

45 / 57

Exercises
Ex06

The root process prints the result at the end. If correct, you should see:

[user@front01 ex06]$ cat ex06-output.txt
Used 8 processes, sum = 1266.960662
[user@front01 ex06]$

Note that ex06.c allows running with any number of processes which divide 2520 exactly

Try, for example, modifying sub-06.sh to use 40 processes (20 per node)

45 / 57

Exercises
Ex06

The root process prints the result at the end. If correct, you should see:

[user@front01 ex06]$ cat ex06-output.txt
Used 8 processes, sum = 1266.960662
[user@front01 ex06]$

Note that ex06.c allows running with any number of processes which divide 2520 exactly

Try, for example, modifying sub-06.sh to use 40 processes (20 per node)

You should see an identical sum:

[user@front01 ex06]$ cat ex06-output.txt
Used 40 processes, sum = 1266.960662
[user@front01 ex06]$

45 / 57

Exercises
Ex07

This exercise demonstrates MPI_Send() and MPI_Recv()

data.txt is the same as in ex04, with eight elements:

[user@front01 ex07]$ cat data.txt
0.42816572487
0.57721566490
0.66274341935
0.69314718056
1.41421356237
1.61803398875
2.71828182846
3.14159265359
[user@front01 ex07]$

46 / 57

Exercises
Ex07

This exercise demonstrates MPI_Send() and MPI_Recv()

data.txt is the same as in ex04, with eight elements:

[user@front01 ex07]$ cat data.txt
0.42816572487
0.57721566490
0.66274341935
0.69314718056
1.41421356237
1.61803398875
2.71828182846
3.14159265359
[user@front01 ex07]$

All elements are read by the root process into array vars[]

46 / 57

Exercises
Ex07

This exercise demonstrates MPI_Send() and MPI_Recv()

data.txt is the same as in ex04, with eight elements:

[user@front01 ex07]$ cat data.txt
0.42816572487
0.57721566490
0.66274341935
0.69314718056
1.41421356237
1.61803398875
2.71828182846
3.14159265359
[user@front01 ex07]$

All elements are read by the root process into array vars[]

The elements are then scattered, one to each process, and stored in variable var0

46 / 57

Exercises
Ex07

This exercise demonstrates MPI_Send() and MPI_Recv()

data.txt is the same as in ex04, with eight elements:

[user@front01 ex07]$ cat data.txt
0.42816572487
0.57721566490
0.66274341935
0.69314718056
1.41421356237
1.61803398875
2.71828182846
3.14159265359
[user@front01 ex07]$

All elements are read by the root process into array vars[]

The elements are then scattered, one to each process, and stored in variable var0

Using MPI_Send() and MPI_Recv(), We would like that:

All processes with even ranks store in variable var1 the value of var0 corresponding to their
next odd rank

All processes with odd ranks store in variable var1 the value of var0 corresponding to their
previous even rank

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

46 / 57

Exercises
Ex07

The TODOs are for completing the arguments of the MPI_Recv()s and MPI_Send()s

double var1;
/*
 * TODO: Use `MPI_Send()' and `MPI_Recv()' appropriately, so that
 * `var0' of each even rank is copied into `var1' of the next odd
 * rank
 */
if(rank % 2 == 0) {
 MPI_Send(/* TODO */);
} else {
 MPI_Recv(/* TODO */);
}

/*
 * TODO: Use `MPI_Send()' and `MPI_Recv()' appropriately, so that
 * `var0' of each odd rank is copied into `var1' of the previous
 * even rank
 */
if(rank % 2 == 1) {
 MPI_Send(/* TODO */);
} else {
 MPI_Recv(/* TODO */);
}

47 / 57

Exercises
Ex07

The correct output should look like this:

[user@front01 ex07]$ cat ex07-output.txt |sort
This is rank = 0 of nproc = 8 on node: cn01 | var0 = 0.428166 var1 = 0.577216
This is rank = 1 of nproc = 8 on node: cn01 | var0 = 0.577216 var1 = 0.428166
This is rank = 2 of nproc = 8 on node: cn01 | var0 = 0.662743 var1 = 0.693147
This is rank = 3 of nproc = 8 on node: cn01 | var0 = 0.693147 var1 = 0.662743
This is rank = 4 of nproc = 8 on node: cn02 | var0 = 1.414214 var1 = 1.618034
This is rank = 5 of nproc = 8 on node: cn02 | var0 = 1.618034 var1 = 1.414214
This is rank = 6 of nproc = 8 on node: cn02 | var0 = 2.718282 var1 = 3.141593
This is rank = 7 of nproc = 8 on node: cn02 | var0 = 3.141593 var1 = 2.718282
[user@front01 ex07]$

48 / 57

Exercises
Ex08

This exercise demonstrates the use of MPI_Sendrecv()

The same data.txt with eight elements is used as before

The elements are read by the root process and scattered to all processes as before

49 / 57

Exercises
Ex08

This exercise demonstrates the use of MPI_Sendrecv()

The same data.txt with eight elements is used as before

The elements are read by the root process and scattered to all processes as before

Now each process has three variables:

var_proc contains the element received from the scatter

var_next is to contain var_proc of the next process

var_prev is to contain var_proc of the previous process

49 / 57

Exercises
Ex08

This exercise demonstrates the use of MPI_Sendrecv()

The same data.txt with eight elements is used as before

The elements are read by the root process and scattered to all processes as before

Now each process has three variables:

var_proc contains the element received from the scatter

var_next is to contain var_proc of the next process

var_prev is to contain var_proc of the previous process

Use two MPI_Sendrecv() to achieve this

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

49 / 57

Exercises
Ex08

The TODOs are for completing the arguments of the MPI_Sendrecv()s

double var_next, var_prev;
/*
 * TODO: Use `MPI_Sendrecv()' appropriately, so that `var_proc' of
 * each rank is copied into `var_prev' of the next rank. Assume
 * periodicity of ranks, i.e. if the sender is the last process
 * (`rank == nproc - 1') then send to the first process (`rank ==
 * 0')
 */
MPI_Sendrecv(/* TODO */);

/*
 * TODO: Use `MPI_Sendrecv()' appropriately, so that `var_proc' of
 * each rank is copied into `var_next' of the previous rank. Assume
 * periodicity of ranks, i.e. if the sender is the first process
 * (`rank == 0') then send to the last process (`rank == nproc - 1')
 */
MPI_Sendrecv(/* TODO */);

50 / 57

Exercises
Ex08

The correct output should look like this:

[user@front01 ex08]$ cat ex08-output.txt | sort
This is rank = 0 of nproc = 8 on node: cn01 | var_proc = 0.428166 var_prev = 3.141593 var_next = 0.577216
This is rank = 1 of nproc = 8 on node: cn01 | var_proc = 0.577216 var_prev = 0.428166 var_next = 0.662743
This is rank = 2 of nproc = 8 on node: cn01 | var_proc = 0.662743 var_prev = 0.577216 var_next = 0.693147
This is rank = 3 of nproc = 8 on node: cn01 | var_proc = 0.693147 var_prev = 0.662743 var_next = 1.414214
This is rank = 4 of nproc = 8 on node: cn02 | var_proc = 1.414214 var_prev = 0.693147 var_next = 1.618034
This is rank = 5 of nproc = 8 on node: cn02 | var_proc = 1.618034 var_prev = 1.414214 var_next = 2.718282
This is rank = 6 of nproc = 8 on node: cn02 | var_proc = 2.718282 var_prev = 1.618034 var_next = 3.141593
This is rank = 7 of nproc = 8 on node: cn02 | var_proc = 3.141593 var_prev = 2.718282 var_next = 0.428166
[user@front01 ex08]$

51 / 57

Hybrid MPI/OpenMP
Combining OpenMP and MPI

OpenMP parallelism within node

MPI parallelism between nodes

Why?
Better control of granularity

Easier to parallelize across domains not divisible by number of processes available

Allows for controlling parallelism in less parallelizable regions (e.g. I/O)

52 / 57

Hybrid MPI/OpenMP
Types of hybrid parallelism

Only master thread calls MPI

No MPI calls within OpenMP parallel regions

May be permitted in an OpenMP Master region

Any thread calls MPI

Serialized

If multiple threads call MPI, there are mechanisms to serialize the calls

Concurrently

MPI thread-safety level permits concurrently calling MPI

53 / 57

Hybrid MPI/OpenMP
Thread awareness in MPI
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

MPI_Init_thread() instead of MPI_Init()

required is the level of thread-safety required (input)

provided is the level of thread-safety this implementation of MPI can provide (output)

One of:

MPI_THREAD_SINGLE, no thread-safety assumed. Equivalent to MPI_Init()

MPI_THREAD_FUNNELED, it is assumed only one thread will call MPI functions

MPI_THREAD_SERIALIZED, multiple threads might call MPI, but serialized

MPI_THREAD_MULTIPLE, any thread can call MPI, even concurrently with other threads

54 / 57

Hybrid MPI/OpenMP
Single mode

We will cover using single mode

Parallel regions can exist in a program

MPI is called outside of the parallel regions

55 / 57

Hybrid MPI/OpenMP
Single mode

See ex09

MPI_Comm_rank() and MPI_Comm_size() are called outside parallel regions

In the omp parallel region we call omp_get_num_threads() and omp_get_thread_num()

56 / 57

Hybrid MPI/OpenMP
Single mode

See ex09

MPI_Comm_rank() and MPI_Comm_size() are called outside parallel regions

In the omp parallel region we call omp_get_num_threads() and omp_get_thread_num()

Try changing OMP_NUM_THREADS and the -N and -npernode arguments in sub-09.sh and observe the
output

56 / 57

Hybrid MPI/OpenMP
Single mode

See ex09

MPI_Comm_rank() and MPI_Comm_size() are called outside parallel regions

In the omp parallel region we call omp_get_num_threads() and omp_get_thread_num()

Try changing OMP_NUM_THREADS and the -N and -npernode arguments in sub-09.sh and observe the
output

Each MPI process spawns its own OpenMP region

56 / 57

Hybrid MPI/OpenMP
Single mode

See ex09

MPI_Comm_rank() and MPI_Comm_size() are called outside parallel regions

In the omp parallel region we call omp_get_num_threads() and omp_get_thread_num()

Try changing OMP_NUM_THREADS and the -N and -npernode arguments in sub-09.sh and observe the
output

Each MPI process spawns its own OpenMP region

I.e., there is a hierarchy, in which MPI processes are at the top level and OpenMP threads at the
lower level

56 / 57

Hybrid MPI/OpenMP
Single mode

See ex09

MPI_Comm_rank() and MPI_Comm_size() are called outside parallel regions

In the omp parallel region we call omp_get_num_threads() and omp_get_thread_num()

Try changing OMP_NUM_THREADS and the -N and -npernode arguments in sub-09.sh and observe the
output

Each MPI process spawns its own OpenMP region

I.e., there is a hierarchy, in which MPI processes are at the top level and OpenMP threads at the
lower level

56 / 57

Hybrid MPI/OpenMP
Dot product using hybrid MPI/OpenMP

ex10 implements a vector dot-product using MPI and OpenMP

Investigate the timing as you vary the number of threads per process and total number of
processes

57 / 57

